Search anything and hit enter
  • Teams
  • Members
  • Projects
  • Events
  • Calls
  • Jobs
  • publications
  • Software
  • Tools
  • Network
  • Equipment

A little guide for advanced search:

  • Tip 1. You can use quotes "" to search for an exact expression.
    Example: "cell division"
  • Tip 2. You can use + symbol to restrict results containing all words.
    Example: +cell +stem
  • Tip 3. You can use + and - symbols to force inclusion or exclusion of specific words.
    Example: +cell -stem
e.g. searching for members in projects tagged cancer
Search for
Count
IN
OUT
Content 1
  • member
  • team
  • department
  • center
  • program_project
  • nrc
  • whocc
  • project
  • software
  • tool
  • patent
  • Administrative Staff
  • Assistant Professor
  • Associate Professor
  • Clinical Research Assistant
  • Clinical Research Nurse
  • Clinician Researcher
  • Department Manager
  • Dual-education Student
  • Full Professor
  • Honorary Professor
  • Lab assistant
  • Master Student
  • Non-permanent Researcher
  • Nursing Staff
  • Permanent Researcher
  • Pharmacist
  • PhD Student
  • Physician
  • Post-doc
  • Prize
  • Project Manager
  • Research Associate
  • Research Engineer
  • Retired scientist
  • Technician
  • Undergraduate Student
  • Veterinary
  • Visiting Scientist
  • Deputy Director of Center
  • Deputy Director of Department
  • Deputy Director of National Reference Center
  • Deputy Head of Facility
  • Director of Center
  • Director of Department
  • Director of Institute
  • Director of National Reference Center
  • Group Leader
  • Head of Facility
  • Head of Operations
  • Head of Structure
  • Honorary President of the Departement
  • Labex Coordinator
Content 2
  • member
  • team
  • department
  • center
  • program_project
  • nrc
  • whocc
  • project
  • software
  • tool
  • patent
  • Administrative Staff
  • Assistant Professor
  • Associate Professor
  • Clinical Research Assistant
  • Clinical Research Nurse
  • Clinician Researcher
  • Department Manager
  • Dual-education Student
  • Full Professor
  • Honorary Professor
  • Lab assistant
  • Master Student
  • Non-permanent Researcher
  • Nursing Staff
  • Permanent Researcher
  • Pharmacist
  • PhD Student
  • Physician
  • Post-doc
  • Prize
  • Project Manager
  • Research Associate
  • Research Engineer
  • Retired scientist
  • Technician
  • Undergraduate Student
  • Veterinary
  • Visiting Scientist
  • Deputy Director of Center
  • Deputy Director of Department
  • Deputy Director of National Reference Center
  • Deputy Head of Facility
  • Director of Center
  • Director of Department
  • Director of Institute
  • Director of National Reference Center
  • Group Leader
  • Head of Facility
  • Head of Operations
  • Head of Structure
  • Honorary President of the Departement
  • Labex Coordinator
Search
Go back
Scroll to top
Share
© Research
Publication : Protein science : a publication of the Protein Society

Undistorted structural analysis of soluble proteins by attenuated total reflectance infrared spectroscopy

Scientific Fields
Diseases
Organisms
Applications
Technique

Published in Protein science : a publication of the Protein Society - 01 Nov 2005

Goldberg ME, Chaffotte AF

Link to Pubmed [PMID] – 16251363

Protein Sci. 2005 Nov;14(11):2781-92

Water from the solvent very strongly absorbs light in the frequency range of interest for studying protein structure by infrared (IR) spectroscopy. This renders handling of the observation cells painstaking and time consuming, and limits the reproducibility of the measurements when IR spectroscopy is applied to proteins in aqueous solutions. These difficulties are circumvented by the use of an Attenuated Total Reflectance (ATR) accessory. However, when protein solutions are studied, ATR spectroscopy suffers from several drawbacks, the most severe being nonproportionality of the observed absorbance with the protein concentration and spectral distortions that vary from protein to protein and from sample to sample. In this study, we show (1) that the nonproportionality is due to adsorption of the protein on the ATR crystal surface; (2) that the contribution of the crystal-adsorbed protein can easily be taken into account, rendering the corrected absorbance proportional to the protein concentration; (3) that the observed variable base line distortions, likely due to changes in the penetration depth of the light beam in solutions with the refractive index that depends on the protein concentration, can be easily eliminated; and (4) that ATR IR spectra thus corrected for protein adsorption and light penetration can be used to properly analyze the secondary structure of proteins in solution.