Search anything and hit enter
  • Teams
  • Members
  • Projects
  • Events
  • Calls
  • Jobs
  • publications
  • Software
  • Tools
  • Network
  • Equipment

A little guide for advanced search:

  • Tip 1. You can use quotes "" to search for an exact expression.
    Example: "cell division"
  • Tip 2. You can use + symbol to restrict results containing all words.
    Example: +cell +stem
  • Tip 3. You can use + and - symbols to force inclusion or exclusion of specific words.
    Example: +cell -stem
e.g. searching for members in projects tagged cancer
Search for
Count
IN
OUT
Content 1
  • member
  • team
  • department
  • center
  • program_project
  • nrc
  • whocc
  • project
  • software
  • tool
  • patent
  • Administrative Staff
  • Assistant Professor
  • Associate Professor
  • Clinical Research Assistant
  • Clinical Research Nurse
  • Clinician Researcher
  • Department Manager
  • Dual-education Student
  • Full Professor
  • Honorary Professor
  • Lab assistant
  • Master Student
  • Non-permanent Researcher
  • Nursing Staff
  • Permanent Researcher
  • Pharmacist
  • PhD Student
  • Physician
  • Post-doc
  • Prize
  • Project Manager
  • Research Associate
  • Research Engineer
  • Retired scientist
  • Technician
  • Undergraduate Student
  • Veterinary
  • Visiting Scientist
  • Deputy Director of Center
  • Deputy Director of Department
  • Deputy Director of National Reference Center
  • Deputy Head of Facility
  • Director of Center
  • Director of Department
  • Director of Institute
  • Director of National Reference Center
  • Group Leader
  • Head of Facility
  • Head of Operations
  • Head of Structure
  • Honorary President of the Departement
  • Labex Coordinator
Content 2
  • member
  • team
  • department
  • center
  • program_project
  • nrc
  • whocc
  • project
  • software
  • tool
  • patent
  • Administrative Staff
  • Assistant Professor
  • Associate Professor
  • Clinical Research Assistant
  • Clinical Research Nurse
  • Clinician Researcher
  • Department Manager
  • Dual-education Student
  • Full Professor
  • Honorary Professor
  • Lab assistant
  • Master Student
  • Non-permanent Researcher
  • Nursing Staff
  • Permanent Researcher
  • Pharmacist
  • PhD Student
  • Physician
  • Post-doc
  • Prize
  • Project Manager
  • Research Associate
  • Research Engineer
  • Retired scientist
  • Technician
  • Undergraduate Student
  • Veterinary
  • Visiting Scientist
  • Deputy Director of Center
  • Deputy Director of Department
  • Deputy Director of National Reference Center
  • Deputy Head of Facility
  • Director of Center
  • Director of Department
  • Director of Institute
  • Director of National Reference Center
  • Group Leader
  • Head of Facility
  • Head of Operations
  • Head of Structure
  • Honorary President of the Departement
  • Labex Coordinator
Search
Go back
Scroll to top
Share
© Ce graphique présente, pour chaque date d'observation depuis 2018, le taux d'accès ouvert des publications scientifiques de l'Institut Pasteur, avec un DOI Crossref, parues durant l'année précédente.
Publication : Journal of insect physiology

Tropical super flies: Integrating Cas9 into Drosophila ananassae and its phenotypic effects.

Scientific Fields
Diseases
Organisms
Applications
Technique

Published in Journal of insect physiology - 01 Jun 2023

Yılmaz VM, Ramnarine TJS, Königer A, Mussgnug S, Grath S

Link to Pubmed [PMID] – 37037372

Link to DOI – 10.1016/j.jinsphys.2023.104516

J Insect Physiol 2023 Jun; 147(): 104516

Ectotherms such as insects are animals whose body temperature largely depends on ambient temperature and temperature variations provide a selection pressure affecting the geographical distribution of these species. However, over the course of evolution, some insect species managed to colonize environments characterized by various temperature ranges. Therefore, insects provide an excellent study system to investigate the basis of adaptation to temperature changes and extremes. We are generally using the vinegar fly Drosophila ananassae as a model system to investigate the genetic basis of cold tolerance. This species has expanded from its tropical ancestral range to more temperate regions resulting in a cosmopolitan, domestic distribution. Previously, we identified candidate genes significantly associated with cold tolerance in this species. We now established molecular genetic tools to assess the function of these genes. Using CRISPR/Cas9 methodology for genome editing and the PiggyBac system, the Cas9 enzyme was successfully integrated into the genome of three fly strains with different levels of cold tolerance. We further report on preliminary findings that the Cas9 integration itself did not have a consistent effect on tolerance to cold. In conclusion, we offer with our study the molecular tools that allow studying stress-related candidate genes in D. ananassae in the future. In addition, we point out and provide guidance on the challenges that come with genome editing in a non-model species.