Search anything and hit enter
  • Teams
  • Members
  • Projects
  • Events
  • Calls
  • Jobs
  • publications
  • Software
  • Tools
  • Network
  • Equipment

A little guide for advanced search:

  • Tip 1. You can use quotes "" to search for an exact expression.
    Example: "cell division"
  • Tip 2. You can use + symbol to restrict results containing all words.
    Example: +cell +stem
  • Tip 3. You can use + and - symbols to force inclusion or exclusion of specific words.
    Example: +cell -stem
e.g. searching for members in projects tagged cancer
Search for
Count
IN
OUT
Content 1
  • member
  • team
  • department
  • center
  • program_project
  • nrc
  • whocc
  • project
  • software
  • tool
  • patent
  • Administrative Staff
  • Assistant Professor
  • Associate Professor
  • Clinical Research Assistant
  • Clinical Research Nurse
  • Clinician Researcher
  • Department Manager
  • Dual-education Student
  • Full Professor
  • Honorary Professor
  • Lab assistant
  • Master Student
  • MD-PhD Student
  • Medical Staff
  • Non-permanent Researcher
  • Nursing Staff
  • Permanent Researcher
  • Pharmacist
  • PhD Student
  • Physician
  • Post-doc
  • Prize
  • Project Manager
  • Research Associate
  • Research Engineer
  • Retired scientist
  • Technician
  • Undergraduate Student
  • Veterinary
  • Visiting Scientist
  • Deputy Director of Center
  • Deputy Director of Department
  • Deputy Director of National Reference Center
  • Deputy Head of Facility
  • Director of Center
  • Director of Department
  • Director of Institute
  • Director of National Reference Center
  • Group Leader
  • Head of Facility
  • Head of Operations
  • Head of Structure
  • Honorary President of the Departement
  • Labex Coordinator
Content 2
  • member
  • team
  • department
  • center
  • program_project
  • nrc
  • whocc
  • project
  • software
  • tool
  • patent
  • Administrative Staff
  • Assistant Professor
  • Associate Professor
  • Clinical Research Assistant
  • Clinical Research Nurse
  • Clinician Researcher
  • Department Manager
  • Dual-education Student
  • Full Professor
  • Honorary Professor
  • Lab assistant
  • Master Student
  • MD-PhD Student
  • Medical Staff
  • Non-permanent Researcher
  • Nursing Staff
  • Permanent Researcher
  • Pharmacist
  • PhD Student
  • Physician
  • Post-doc
  • Prize
  • Project Manager
  • Research Associate
  • Research Engineer
  • Retired scientist
  • Technician
  • Undergraduate Student
  • Veterinary
  • Visiting Scientist
  • Deputy Director of Center
  • Deputy Director of Department
  • Deputy Director of National Reference Center
  • Deputy Head of Facility
  • Director of Center
  • Director of Department
  • Director of Institute
  • Director of National Reference Center
  • Group Leader
  • Head of Facility
  • Head of Operations
  • Head of Structure
  • Honorary President of the Departement
  • Labex Coordinator
Search
Go back
Scroll to top
Share
© Christelle Durand
Microscopie d'un neurone. Le marquage jaune montre les synapses.
Publication : Nature communications

Transcriptomic decoding of surface-based imaging phenotypes and its application to pharmacotranscriptomics.

Scientific Fields
Diseases
Organisms
Applications
Technique

Published in Nature communications - 22 Jul 2025

Ecker C, Pretzsch CM, Leyhausen J, Berg LM, Gurr C, Seelemeyer H, McAlonan G, Puts NA, Loth E, Dell'Aqua F, Mason L, Charman T, Oakley B, Bourgeron T, Beckmann C, Buitelaar JK, Arango C, Banaschewski T, Chiocchetti AG, Freitag CM, Hattingen E, Krueger-Burg D, Schmeisser MJ, Repple J, Reif A, Murphy DG

Link to Pubmed [PMID] – 40691132

Link to DOI – 10.1038/s41467-025-61927-3

Nat Commun 2025 Jul; 16(1): 6727

Imaging transcriptomics has become a power tool for linking imaging-derived phenotypes (IDPs) to genomic mechanisms. Yet, its potential for guiding CNS drug discovery remains underexplored. Here, utilizing spatially-dense representations of the human brain transcriptome, we present an analytical framework for the transcriptomic decoding of high-resolution surface-based neuroimaging patterns, and for linking IDPs to the transcriptomic landscape of complex neurotransmission systems in vivo. Leveraging publicly available Positron Emission Tomography (PET) data, we initially validated our approach against molecular targets with a high correspondence between gene expression and protein binding. Subsequently, we used the cortical gene expression profiles of candidate genes to dissect two discrete classes of GABAA-receptor subunits, each characterized by a distinct cortical expression pattern, and to link these to specific behavioural symptoms and traits. Our approach thus represents a future avenue for in vivo pharmacotranscriptomics that may guide the development of targeted pharmacotherapies and personalized interventions.