Search anything and hit enter
  • Teams
  • Members
  • Projects
  • Events
  • Calls
  • Jobs
  • publications
  • Software
  • Tools
  • Network
  • Equipment

A little guide for advanced search:

  • Tip 1. You can use quotes "" to search for an exact expression.
    Example: "cell division"
  • Tip 2. You can use + symbol to restrict results containing all words.
    Example: +cell +stem
  • Tip 3. You can use + and - symbols to force inclusion or exclusion of specific words.
    Example: +cell -stem
e.g. searching for members in projects tagged cancer
Search for
Count
IN
OUT
Content 1
  • member
  • team
  • department
  • center
  • program_project
  • nrc
  • whocc
  • project
  • software
  • tool
  • patent
  • Administrative Staff
  • Assistant Professor
  • Associate Professor
  • Clinical Research Assistant
  • Clinical Research Nurse
  • Clinician Researcher
  • Department Manager
  • Dual-education Student
  • Full Professor
  • Honorary Professor
  • Lab assistant
  • Master Student
  • Non-permanent Researcher
  • Nursing Staff
  • Permanent Researcher
  • Pharmacist
  • PhD Student
  • Physician
  • Post-doc
  • Prize
  • Project Manager
  • Research Associate
  • Research Engineer
  • Retired scientist
  • Technician
  • Undergraduate Student
  • Veterinary
  • Visiting Scientist
  • Deputy Director of Center
  • Deputy Director of Department
  • Deputy Director of National Reference Center
  • Deputy Head of Facility
  • Director of Center
  • Director of Department
  • Director of Institute
  • Director of National Reference Center
  • Group Leader
  • Head of Facility
  • Head of Operations
  • Head of Structure
  • Honorary President of the Departement
  • Labex Coordinator
Content 2
  • member
  • team
  • department
  • center
  • program_project
  • nrc
  • whocc
  • project
  • software
  • tool
  • patent
  • Administrative Staff
  • Assistant Professor
  • Associate Professor
  • Clinical Research Assistant
  • Clinical Research Nurse
  • Clinician Researcher
  • Department Manager
  • Dual-education Student
  • Full Professor
  • Honorary Professor
  • Lab assistant
  • Master Student
  • Non-permanent Researcher
  • Nursing Staff
  • Permanent Researcher
  • Pharmacist
  • PhD Student
  • Physician
  • Post-doc
  • Prize
  • Project Manager
  • Research Associate
  • Research Engineer
  • Retired scientist
  • Technician
  • Undergraduate Student
  • Veterinary
  • Visiting Scientist
  • Deputy Director of Center
  • Deputy Director of Department
  • Deputy Director of National Reference Center
  • Deputy Head of Facility
  • Director of Center
  • Director of Department
  • Director of Institute
  • Director of National Reference Center
  • Group Leader
  • Head of Facility
  • Head of Operations
  • Head of Structure
  • Honorary President of the Departement
  • Labex Coordinator
Search
Go back
Scroll to top
Share
© Research
Publication : Differentiation; research in biological diversity

Transcriptional regulation of actin and myosin genes during differentiation of a mouse muscle cell line.

Scientific Fields
Diseases
Organisms
Applications
Technique

Published in Differentiation; research in biological diversity - 01 Jun 1990

Cox RD, Garner I, Buckingham ME

Link to Pubmed [PMID] – 2201580

Differentiation 1990 Jun; 43(3): 183-91

During terminal differentiation of skeletal muscle cells in vitro there is a transition from a predominantly nonmuscle contractile protein phenotype to a sarcomeric contractile protein phenotype. In order to investigate whether this transition and subsequent changes in expression are primarily transcriptionally regulated, we have analysed the rate of transcription and level of corresponding RNA accumulation of actin and myosin light chain genes during differentiation of a mouse muscle cell line under different culture conditions (low-serum and serum-free). We have found by ‘nuclear run-on’ analysis, that the alpha-cardiac actin, alpha-skeletal actin, myosin light chain 1F/3F and embryonic myosin light chain genes are transcriptionally activated as myoblasts begin to fuse to form myotubes. In contrast the nonsarcomeric beta-actin gene is transcribed at high levels in myoblasts and is transcriptionally down-regulated during differentiation. There is a sequential transition in transcription and RNA accumulation from predominantly alpha-cardiac to predominantly alpha-skeletal actin during subsequent myotube maturation, which reflects the pattern of expression found during development in vivo. A similar transition from embryonic to adult patterns of myosin light chain expression does not occur. RNA accumulation of actin and myosin light chains is regulated at both transcriptional and post-transcriptional levels. In our culture system the expression of myosin light chains 1F and 3F, which are encoded by a single gene, is uncoupled, 3F predominating. These data are discussed in the context of gene regulation mechanisms.