Search anything and hit enter
  • Teams
  • Members
  • Projects
  • Events
  • Calls
  • Jobs
  • publications
  • Software
  • Tools
  • Network
  • Equipment

A little guide for advanced search:

  • Tip 1. You can use quotes "" to search for an exact expression.
    Example: "cell division"
  • Tip 2. You can use + symbol to restrict results containing all words.
    Example: +cell +stem
  • Tip 3. You can use + and - symbols to force inclusion or exclusion of specific words.
    Example: +cell -stem
e.g. searching for members in projects tagged cancer
Search for
Count
IN
OUT
Content 1
  • member
  • team
  • department
  • center
  • program_project
  • nrc
  • whocc
  • project
  • software
  • tool
  • patent
  • Administrative Staff
  • Assistant Professor
  • Associate Professor
  • Clinical Research Assistant
  • Clinical Research Nurse
  • Clinician Researcher
  • Department Manager
  • Dual-education Student
  • Full Professor
  • Honorary Professor
  • Lab assistant
  • Master Student
  • Non-permanent Researcher
  • Nursing Staff
  • Permanent Researcher
  • Pharmacist
  • PhD Student
  • Physician
  • Post-doc
  • Prize
  • Project Manager
  • Research Associate
  • Research Engineer
  • Retired scientist
  • Technician
  • Undergraduate Student
  • Veterinary
  • Visiting Scientist
  • Deputy Director of Center
  • Deputy Director of Department
  • Deputy Director of National Reference Center
  • Deputy Head of Facility
  • Director of Center
  • Director of Department
  • Director of Institute
  • Director of National Reference Center
  • Group Leader
  • Head of Facility
  • Head of Operations
  • Head of Structure
  • Honorary President of the Departement
  • Labex Coordinator
Content 2
  • member
  • team
  • department
  • center
  • program_project
  • nrc
  • whocc
  • project
  • software
  • tool
  • patent
  • Administrative Staff
  • Assistant Professor
  • Associate Professor
  • Clinical Research Assistant
  • Clinical Research Nurse
  • Clinician Researcher
  • Department Manager
  • Dual-education Student
  • Full Professor
  • Honorary Professor
  • Lab assistant
  • Master Student
  • Non-permanent Researcher
  • Nursing Staff
  • Permanent Researcher
  • Pharmacist
  • PhD Student
  • Physician
  • Post-doc
  • Prize
  • Project Manager
  • Research Associate
  • Research Engineer
  • Retired scientist
  • Technician
  • Undergraduate Student
  • Veterinary
  • Visiting Scientist
  • Deputy Director of Center
  • Deputy Director of Department
  • Deputy Director of National Reference Center
  • Deputy Head of Facility
  • Director of Center
  • Director of Department
  • Director of Institute
  • Director of National Reference Center
  • Group Leader
  • Head of Facility
  • Head of Operations
  • Head of Structure
  • Honorary President of the Departement
  • Labex Coordinator
Search
Go back
Scroll to top
Share
© Research
Publication : Current opinion in otolaryngology & head and neck surgery

The physical basis of active mechanosensitivity by the hair-cell bundle.

Scientific Fields
Diseases
Organisms
Applications
Technique

Published in Current opinion in otolaryngology & head and neck surgery - 01 Oct 2011

Barral J, Martin P

Link to Pubmed [PMID] – 21825996

Link to DOI – 10.1097/MOO.0b013e32834a8c33

Curr Opin Otolaryngol Head Neck Surg 2011 Oct; 19(5): 369-75

Hearing starts with the deflection of the hair bundle that sits on top of each mechanosensory hair cell. Recent advances indicate that the hair bundle mechanically amplifies its inputs to participate in the active process that boosts the ear’s technical specifications. This review integrates experimental and modeling studies to dissect the mechanisms of active mechanosensation by the hair-cell bundle.The exquisite mechanosensitivity of the hair-cell bundle results from a precisely choreographed interplay between a structure of mechanically coupled stereocilia that ensures efficient transmission of sound-energy to the transduction machinery, Ca-driven adaptation that provides fast electromechanical feedback on hair-bundle movements, and a mechanical nonlinearity inherent to the transduction process that fosters autonomous hair-bundle oscillations. In cochlear outer hair cells, cooperation between active hair-bundle motility and somatic electromotility brings the cochlear partition to the brink of an oscillatory instability, at which general physical laws ensure optimal properties for auditory detection.The study of active hair-bundle mechanics promotes a general principle for auditory detection that is based on the generic properties of self-sustained mechanical oscillators. This principle may guide future engineering design of cochlear implants.