Search anything and hit enter
  • Teams
  • Members
  • Projects
  • Events
  • Calls
  • Jobs
  • publications
  • Software
  • Tools
  • Network
  • Equipment

A little guide for advanced search:

  • Tip 1. You can use quotes "" to search for an exact expression.
    Example: "cell division"
  • Tip 2. You can use + symbol to restrict results containing all words.
    Example: +cell +stem
  • Tip 3. You can use + and - symbols to force inclusion or exclusion of specific words.
    Example: +cell -stem
e.g. searching for members in projects tagged cancer
Search for
Count
IN
OUT
Content 1
  • member
  • team
  • department
  • center
  • program_project
  • nrc
  • whocc
  • project
  • software
  • tool
  • patent
  • Administrative Staff
  • Assistant Professor
  • Associate Professor
  • Clinical Research Assistant
  • Clinical Research Nurse
  • Clinician Researcher
  • Department Manager
  • Dual-education Student
  • Full Professor
  • Honorary Professor
  • Lab assistant
  • Master Student
  • Non-permanent Researcher
  • Nursing Staff
  • Permanent Researcher
  • Pharmacist
  • PhD Student
  • Physician
  • Post-doc
  • Prize
  • Project Manager
  • Research Associate
  • Research Engineer
  • Retired scientist
  • Technician
  • Undergraduate Student
  • Veterinary
  • Visiting Scientist
  • Deputy Director of Center
  • Deputy Director of Department
  • Deputy Director of National Reference Center
  • Deputy Head of Facility
  • Director of Center
  • Director of Department
  • Director of Institute
  • Director of National Reference Center
  • Group Leader
  • Head of Facility
  • Head of Operations
  • Head of Structure
  • Honorary President of the Departement
  • Labex Coordinator
Content 2
  • member
  • team
  • department
  • center
  • program_project
  • nrc
  • whocc
  • project
  • software
  • tool
  • patent
  • Administrative Staff
  • Assistant Professor
  • Associate Professor
  • Clinical Research Assistant
  • Clinical Research Nurse
  • Clinician Researcher
  • Department Manager
  • Dual-education Student
  • Full Professor
  • Honorary Professor
  • Lab assistant
  • Master Student
  • Non-permanent Researcher
  • Nursing Staff
  • Permanent Researcher
  • Pharmacist
  • PhD Student
  • Physician
  • Post-doc
  • Prize
  • Project Manager
  • Research Associate
  • Research Engineer
  • Retired scientist
  • Technician
  • Undergraduate Student
  • Veterinary
  • Visiting Scientist
  • Deputy Director of Center
  • Deputy Director of Department
  • Deputy Director of National Reference Center
  • Deputy Head of Facility
  • Director of Center
  • Director of Department
  • Director of Institute
  • Director of National Reference Center
  • Group Leader
  • Head of Facility
  • Head of Operations
  • Head of Structure
  • Honorary President of the Departement
  • Labex Coordinator
Search
Go back
Scroll to top
Share
© Artur Scherf
Scanning Electron Microscopy of Red Blood Cell infected by Plasmodium falciparum.
Publication : The Journal of biological chemistry

The mammalian Hsp40 ERdj3 requires its Hsp70 interaction and substrate-binding properties to complement various yeast Hsp40-dependent functions

Scientific Fields
Diseases
Organisms
Applications
Technique

Published in The Journal of biological chemistry - 11 Sep 2009

Vembar SS, Jin Y, Brodsky JL, Hendershot LM

Link to Pubmed [PMID] – 19748898

J. Biol. Chem. 2009 Nov;284(47):32462-71

Heat shock proteins of 70 kDa (Hsp70s) and their J domain-containing Hsp40 cofactors are highly conserved chaperone pairs that facilitate a large number of cellular processes. The observation that each Hsp70 partners with many J domain-containing proteins (JDPs) has led to the hypothesis that Hsp70 function is dictated by cognate JDPs. If this is true, one might expect highly divergent Hsp70-JDP pairs to be unable to function in vivo. However, we discovered that, when a yeast cytosolic JDP, Ydj1, was targeted to the mammalian endoplasmic reticulum (ER), it interacted with the ER-lumenal Hsp70, BiP, and bound to BiP substrates. Conversely, when a mammalian ER-lumenal JDP, ERdj3, was directed to the yeast cytosol, it rescued the temperature-sensitive growth phenotype of yeast-containing mutant alleles in two cytosolic JDPs, HLJ1 and YDJ1, and activated the ATP hydrolysis rate of Ssa1, the yeast cytosolic Hsp70 that partners with Hlj1 and Ydj1. Surprisingly, ERdj3 mutants that were compromised for substrate binding were unable to rescue the hlj1ydj1 growth defect even though they stimulated the ATPase activity of Ssa1. Yet, J domain mutants of ERdj3 that were defective for interaction with Ssa1 restored the growth of hlj1ydj1 yeast. Taken together, these data suggest that the substrate binding properties of certain JDPs, not simply the formation of unique Hsp70-JDP pairs, are critical to specify in vivo function.