Link to Pubmed [PMID] – 31063817
Neuroimage. 2019 May 4
More than two decades of functional magnetic resonance imaging (fMRI) of the human brain have succeeded to identify, with a growing level of precision, the neural basis of multiple cognitive skills within various domains (perception, sensorimotor processes, language, emotion and social cognition …). Progress has been made in the comprehension of the functional organization of localized brain areas. However, the long time required for fMRI acquisition limits the number of experimental conditions performed in a single individual. As a consequence, distinct brain localizations have mostly been studied in separate groups of participants, and their functional relationships at the individual level remain poorly understood. To address this issue, we report here preliminary results on a database of fMRI data acquired on 78 individuals who each performed a total of 29 experimental conditions, grouped in 4 cross-domains functional localizers. This protocol has been designed to efficiently isolate, in a single session, the brain activity associated with language, numerical representation, social perception and reasoning, premotor and visuomotor representations. Analyses are reported at the group and at the individual level, to establish the ability of our protocol to selectively capture distinct regions of interest in a very short time. Test-retest reliability was assessed in a subset of participants. The activity evoked by the different contrasts of the protocol is located in distinct brain networks that, individually, largely replicate previous findings and, taken together, cover a large proportion of the cortical surface. We provide detailed analyses of a subset of regions of relevance: the left frontal, left temporal and middle frontal cortices. These preliminary analyses highlight how combining such a large set of functional contrasts may contribute to establish a finer-grained brain atlas of cognitive functions, especially in regions of high functional overlap. Detailed structural images (structural connectivity, micro-structures, axonal diameter) acquired in the same individuals in the context of the ARCHI database provide a promising situation to explore functional/structural interdependence. Additionally, this protocol might also be used as a way to establish individual neurofunctional signatures in large cohorts.