Search anything and hit enter
  • Teams
  • Members
  • Projects
  • Events
  • Calls
  • Jobs
  • publications
  • Software
  • Tools
  • Network
  • Equipment

A little guide for advanced search:

  • Tip 1. You can use quotes "" to search for an exact expression.
    Example: "cell division"
  • Tip 2. You can use + symbol to restrict results containing all words.
    Example: +cell +stem
  • Tip 3. You can use + and - symbols to force inclusion or exclusion of specific words.
    Example: +cell -stem
e.g. searching for members in projects tagged cancer
Search for
Count
IN
OUT
Content 1
  • member
  • team
  • department
  • center
  • program_project
  • nrc
  • whocc
  • project
  • software
  • tool
  • patent
  • Administrative Staff
  • Assistant Professor
  • Associate Professor
  • Clinical Research Assistant
  • Clinical Research Nurse
  • Clinician Researcher
  • Department Manager
  • Dual-education Student
  • Full Professor
  • Honorary Professor
  • Lab assistant
  • Master Student
  • Non-permanent Researcher
  • Nursing Staff
  • Permanent Researcher
  • Pharmacist
  • PhD Student
  • Physician
  • Post-doc
  • Prize
  • Project Manager
  • Research Associate
  • Research Engineer
  • Retired scientist
  • Technician
  • Undergraduate Student
  • Veterinary
  • Visiting Scientist
  • Deputy Director of Center
  • Deputy Director of Department
  • Deputy Director of National Reference Center
  • Deputy Head of Facility
  • Director of Center
  • Director of Department
  • Director of Institute
  • Director of National Reference Center
  • Group Leader
  • Head of Facility
  • Head of Operations
  • Head of Structure
  • Honorary President of the Departement
  • Labex Coordinator
Content 2
  • member
  • team
  • department
  • center
  • program_project
  • nrc
  • whocc
  • project
  • software
  • tool
  • patent
  • Administrative Staff
  • Assistant Professor
  • Associate Professor
  • Clinical Research Assistant
  • Clinical Research Nurse
  • Clinician Researcher
  • Department Manager
  • Dual-education Student
  • Full Professor
  • Honorary Professor
  • Lab assistant
  • Master Student
  • Non-permanent Researcher
  • Nursing Staff
  • Permanent Researcher
  • Pharmacist
  • PhD Student
  • Physician
  • Post-doc
  • Prize
  • Project Manager
  • Research Associate
  • Research Engineer
  • Retired scientist
  • Technician
  • Undergraduate Student
  • Veterinary
  • Visiting Scientist
  • Deputy Director of Center
  • Deputy Director of Department
  • Deputy Director of National Reference Center
  • Deputy Head of Facility
  • Director of Center
  • Director of Department
  • Director of Institute
  • Director of National Reference Center
  • Group Leader
  • Head of Facility
  • Head of Operations
  • Head of Structure
  • Honorary President of the Departement
  • Labex Coordinator
Search
Go back
Scroll to top
Share
© Research
Publication : The Journal of biological chemistry

The COP9 signalosome regulates Skp2 levels and proliferation of human cells

Scientific Fields
Diseases
Organisms
Applications
Technique

Published in The Journal of biological chemistry - 30 Aug 2006

Denti S, Fernandez-Sanchez ME, Rogge L, Bianchi E

Link to Pubmed [PMID] – 16943200

J. Biol. Chem. 2006 Oct;281(43):32188-96

The COP9 signalosome (CSN) is a conserved, multisubunit complex first identified as a developmental regulator in plants. Gene inactivation of single CSN subunits results in early embryonic lethality in mice, indicating that the CSN is essential for mammalian development. The pleiotropic function of the CSN may be related to its ability to remove the ubiquitin-like peptide Nedd8 from cullin-RING ubiquitin ligases, such as the SCF complex, and therefore regulate their activity. However, the mechanism of CSN regulatory action on cullins has been debated, since, paradoxically, the CSN has an inhibitory role in vitro, while genetic evidence supports a positive regulatory role in vivo. We have targeted expression of CSN subunits 4 and 5 in human cells by lentivirus-mediated small hairpin RNA delivery. Down-regulation of either subunit resulted in disruption of the CSN complex and in Cullin1 hyperneddylation. Functional consequences of CSN down-regulation were decreased protein levels of Skp2, the substrate recognition subunit of SCF(Skp2), and stabilization of a Skp2 target, the cyclin-dependent kinase inhibitor p27(Kip1). CSN down-regulation caused an impairment in cell proliferation, which could be partially reversed by suppression of p27(Kip1). Moreover, restoring Skp2 levels in CSN-deficient cells recovered cell cycle progression, indicating that loss of Skp2 in these cells plays an important role in their proliferation defect. Our data indicate that the CSN is necessary to ensure the assembly of a functional SCF(Skp2) complex and therefore contributes to cell cycle regulation of human cells.