Search anything and hit enter
  • Teams
  • Members
  • Projects
  • Events
  • Calls
  • Jobs
  • publications
  • Software
  • Tools
  • Network
  • Equipment

A little guide for advanced search:

  • Tip 1. You can use quotes "" to search for an exact expression.
    Example: "cell division"
  • Tip 2. You can use + symbol to restrict results containing all words.
    Example: +cell +stem
  • Tip 3. You can use + and - symbols to force inclusion or exclusion of specific words.
    Example: +cell -stem
e.g. searching for members in projects tagged cancer
Search for
Count
IN
OUT
Content 1
  • member
  • team
  • department
  • center
  • program_project
  • nrc
  • whocc
  • project
  • software
  • tool
  • patent
  • Administrative Staff
  • Assistant Professor
  • Associate Professor
  • Clinical Research Assistant
  • Clinical Research Nurse
  • Clinician Researcher
  • Department Manager
  • Dual-education Student
  • Full Professor
  • Honorary Professor
  • Lab assistant
  • Master Student
  • Non-permanent Researcher
  • Nursing Staff
  • Permanent Researcher
  • Pharmacist
  • PhD Student
  • Physician
  • Post-doc
  • Prize
  • Project Manager
  • Research Associate
  • Research Engineer
  • Retired scientist
  • Technician
  • Undergraduate Student
  • Veterinary
  • Visiting Scientist
  • Deputy Director of Center
  • Deputy Director of Department
  • Deputy Director of National Reference Center
  • Deputy Head of Facility
  • Director of Center
  • Director of Department
  • Director of Institute
  • Director of National Reference Center
  • Group Leader
  • Head of Facility
  • Head of Operations
  • Head of Structure
  • Honorary President of the Departement
  • Labex Coordinator
Content 2
  • member
  • team
  • department
  • center
  • program_project
  • nrc
  • whocc
  • project
  • software
  • tool
  • patent
  • Administrative Staff
  • Assistant Professor
  • Associate Professor
  • Clinical Research Assistant
  • Clinical Research Nurse
  • Clinician Researcher
  • Department Manager
  • Dual-education Student
  • Full Professor
  • Honorary Professor
  • Lab assistant
  • Master Student
  • Non-permanent Researcher
  • Nursing Staff
  • Permanent Researcher
  • Pharmacist
  • PhD Student
  • Physician
  • Post-doc
  • Prize
  • Project Manager
  • Research Associate
  • Research Engineer
  • Retired scientist
  • Technician
  • Undergraduate Student
  • Veterinary
  • Visiting Scientist
  • Deputy Director of Center
  • Deputy Director of Department
  • Deputy Director of National Reference Center
  • Deputy Head of Facility
  • Director of Center
  • Director of Department
  • Director of Institute
  • Director of National Reference Center
  • Group Leader
  • Head of Facility
  • Head of Operations
  • Head of Structure
  • Honorary President of the Departement
  • Labex Coordinator
Search

← Go to Research

Go back
Scroll to top
Share
© Research
Publication : Proteins

The conformational plasticity of calmodulin upon calcium complexation gives a model of its interaction with the oedema factor of Bacillus anthracis

Scientific Fields
Diseases
Organisms
Applications
Technique

Published in Proteins - 01 Jun 2008

Laine E, Yoneda JD, Blondel A, Malliavin TE

Link to Pubmed [PMID] – 18175311

Proteins 2008 Jun;71(4):1813-29

We analyzed the conformational plasticity of calmodulin (CaM) when it is bound to the oedema factor (EF) of Bacillus anthracis and its response to calcium complexation with molecular dynamics (MD) simulations. The EF-CaM complex was simulated during 15 ns for three different levels of calcium bound to CaM. They were respectively no calcium ion (EF-(Apo-CaM)), two calcium ions bound to the C-terminal domain of CaM (EF-(2Ca-CaM)), and four calcium ions bound to CaM (EF-(4Ca-CaM)). Calculations were performed using AMBER package. The analysis of the MD simulations illustrates how CaM forces EF in an open conformation to form the adenylyl cyclase enzymatic site, especially with the two calcium form of CaM, best suited to fit the open conformation of EF. By contrast, CaM encounters bending and unwinding of its flexible interlinker in EF-(Apo-CaM) and EF-(4Ca-CaM). Calcium binding to one domain of CaM affects the other one, showing a transmission of information along the protein structure. The analysis of the CaM domains conformation along the simulations brings an atomistic and dynamic explanation for the instability of these complexes. Indeed the EF-hand helices of the N-terminal domain tend to open upon calcium binding (EF-(4Ca-CaM)), although the domain is locked by EF. By contrast, the C-terminal domain is strongly locked in the open conformation by EF, and the removal of calcium induces a collapse of EF catalytic site (EF-(Apo-CaM)).