Search anything and hit enter
  • Teams
  • Members
  • Projects
  • Events
  • Calls
  • Jobs
  • publications
  • Software
  • Tools
  • Network
  • Equipment

A little guide for advanced search:

  • Tip 1. You can use quotes "" to search for an exact expression.
    Example: "cell division"
  • Tip 2. You can use + symbol to restrict results containing all words.
    Example: +cell +stem
  • Tip 3. You can use + and - symbols to force inclusion or exclusion of specific words.
    Example: +cell -stem
e.g. searching for members in projects tagged cancer
Search for
Count
IN
OUT
Content 1
  • member
  • team
  • department
  • center
  • program_project
  • nrc
  • whocc
  • project
  • software
  • tool
  • patent
  • Administrative Staff
  • Assistant Professor
  • Associate Professor
  • Clinical Research Assistant
  • Clinical Research Nurse
  • Clinician Researcher
  • Department Manager
  • Dual-education Student
  • Full Professor
  • Honorary Professor
  • Lab assistant
  • Master Student
  • Non-permanent Researcher
  • Nursing Staff
  • Permanent Researcher
  • Pharmacist
  • PhD Student
  • Physician
  • Post-doc
  • Prize
  • Project Manager
  • Research Associate
  • Research Engineer
  • Retired scientist
  • Technician
  • Undergraduate Student
  • Veterinary
  • Visiting Scientist
  • Deputy Director of Center
  • Deputy Director of Department
  • Deputy Director of National Reference Center
  • Deputy Head of Facility
  • Director of Center
  • Director of Department
  • Director of Institute
  • Director of National Reference Center
  • Group Leader
  • Head of Facility
  • Head of Operations
  • Head of Structure
  • Honorary President of the Departement
  • Labex Coordinator
Content 2
  • member
  • team
  • department
  • center
  • program_project
  • nrc
  • whocc
  • project
  • software
  • tool
  • patent
  • Administrative Staff
  • Assistant Professor
  • Associate Professor
  • Clinical Research Assistant
  • Clinical Research Nurse
  • Clinician Researcher
  • Department Manager
  • Dual-education Student
  • Full Professor
  • Honorary Professor
  • Lab assistant
  • Master Student
  • Non-permanent Researcher
  • Nursing Staff
  • Permanent Researcher
  • Pharmacist
  • PhD Student
  • Physician
  • Post-doc
  • Prize
  • Project Manager
  • Research Associate
  • Research Engineer
  • Retired scientist
  • Technician
  • Undergraduate Student
  • Veterinary
  • Visiting Scientist
  • Deputy Director of Center
  • Deputy Director of Department
  • Deputy Director of National Reference Center
  • Deputy Head of Facility
  • Director of Center
  • Director of Department
  • Director of Institute
  • Director of National Reference Center
  • Group Leader
  • Head of Facility
  • Head of Operations
  • Head of Structure
  • Honorary President of the Departement
  • Labex Coordinator
Search

← Go to Research

Go back
Scroll to top
Share
© Research
Publication : Methods in molecular biology (Clifton, N.J.)

Template-Assisted Metabolic Reconstruction and Assembly of Hybrid Bacterial Models.

Scientific Fields
Diseases
Organisms
Applications
Technique

Published in Methods in molecular biology (Clifton, N.J.) - 01 Jan 2018

Vignolini T, Mengoni A, Fondi M

Link to Pubmed [PMID] – 29222754

Link to DOI – 10.1007/978-1-4939-7528-0_8

Methods Mol Biol 2018 ; 1716(): 177-196

Intraspecific genomic exchanges happen frequently between bacteria living in the same natural environment and can also be performed artificially in the laboratory for basic research or genetic/metabolic engineering purposes. In silico metabolic reconstruction and simulation of the metabolism of the hybrid strains that result from these processes can be used to predict the phenotypic outcome of such genomic rearrangements; this can be especially helpful as a designing tool in the purview of synthetic biology. However, reconstructing the metabolism of a bacterium with a hybrid genome through in silico approaches is not a trivial task, as it requires taking into account the complex relationships existing between metabolic genes and how they change (or remain unchanged) when new genes are placed in a different genomic context. Furthermore, in order to “mix” the metabolic models of different bacterial strains one needs at least two different metabolic models to begin with, and reconstructing a genome-scale model from the ground up is a challenging task itself, requiring an intensive manual effort and a great deal of information. In this chapter, we propose two general protocols to address the aforementioned issues of: (1) quickly generating strain-specific metabolic models, given the relevant genomic sequence and an already existing, high-quality metabolic model of a different strain belonging to the same species, and (2) reconstructing the metabolic model of a hybrid strain containing genomic elements from two different parental strains.