Link to Pubmed [PMID] – 36683083
Link to HAL – hal-04010119
Link to DOI – 10.1186/s13071-022-05632-w
Parasites & Vectors, 2023, 16 (1), pp.22. ⟨10.1186/s13071-022-05632-w⟩
Background Ticks and tick-borne pathogens significantly impact both human and animal health and therefore are of major concern to the scientific community. Knowledge of tick-borne pathogens is crucial for prescription of mitigation measures. In Africa, much research on ticks has focused on domestic animals. Little is known about ticks and their pathogens in wild habitats and wild animals like the endangered chimpanzee, our closest relative. Methods In this study, we collected ticks in the forested habitat of a community of 100 chimpanzees living in Kibale National Park, Western Uganda, and assessed how their presence and abundance are influenced by environmental factors. We used non-invasive methods of flagging the vegetation and visual search of ticks both on human team members and in chimpanzee nests. We identified adult and nymph ticks through morphological features. Molecular techniques were used to detect and identify tick-borne piroplasmids and bacterial pathogens. Results A total of 470 ticks were collected, which led to the identification of seven tick species: Haemaphysalis parmata (68.77%), Amblyomma tholloni (20.70%), Ixodes rasus sensu lato (7.37%), Rhipicephalus dux (1.40%), Haemaphysalis punctaleachi (0.70%), Ixodes muniensis (0.70%) and Amblyomma paulopunctatum (0.35%). The presence of ticks, irrespective of species, was influenced by temperature and type of vegetation but not by relative humidity. Molecular detection revealed the presence of at least six genera of tick-borne pathogens (Babesia, Theileria, Borrelia, Cryptoplasma, Ehrlichia and Rickettsia). The Afrotopical tick Amblyomma tholloni found in one chimpanzee nest was infected by Rickettsia sp. Conclusions In conclusion, this study presented ticks and tick-borne pathogens in a Ugandan wildlife habitat whose potential effects on animal health remain to be elucidated.