Link to Pubmed [PMID] – 28218309
Sci Rep 2017 Feb;7:42902
Suramin was previously shown to bind to the EV-A71 capsid through its naphthalenetrisulfonic acid groups, thereby reducing virus-cell binding and inhibiting viral replication. Here, we identify VP1-145 as the critical amino acid that accounts for the differential sensitivity of EVA-71 viruses to suramin. A single Q or G to E substitution at VP1-145 results in an approximately 30-fold shift of IC50 or IC90 values reproducing the inhibition profile observed with field isolates expressing either the 145Q or E mutation. Our data support the conclusion that suramin binds to the positively charged region surrounding the 5-fold axis of the capsid and consequently blocks the virus attachment and entry into host cells. In order to assess the antiviral-spectrum of suramin, we analyzed 18 representative enteroviruses: A (n = 7), B (n = 5), C (n = 5) and D (n = 1). We show that suramin potency is restricted to enterovirus A species. Clinical development of suramin is further supported by pharmacokinetic data demonstrating bioactive plasma levels after a single dose intramuscular administration in macaques. Altogether, our findings support the clinical development of suramin as a novel entry inhibitor for the treatment of enterovirus A infections.