Search anything and hit enter
  • Teams
  • Members
  • Projects
  • Events
  • Calls
  • Jobs
  • publications
  • Software
  • Tools
  • Network
  • Equipment

A little guide for advanced search:

  • Tip 1. You can use quotes "" to search for an exact expression.
    Example: "cell division"
  • Tip 2. You can use + symbol to restrict results containing all words.
    Example: +cell +stem
  • Tip 3. You can use + and - symbols to force inclusion or exclusion of specific words.
    Example: +cell -stem
e.g. searching for members in projects tagged cancer
Search for
Count
IN
OUT
Content 1
  • member
  • team
  • department
  • center
  • program_project
  • nrc
  • whocc
  • project
  • software
  • tool
  • patent
  • Administrative Staff
  • Assistant Professor
  • Associate Professor
  • Clinical Research Assistant
  • Clinical Research Nurse
  • Clinician Researcher
  • Department Manager
  • Dual-education Student
  • Full Professor
  • Honorary Professor
  • Lab assistant
  • Master Student
  • Non-permanent Researcher
  • Nursing Staff
  • Permanent Researcher
  • Pharmacist
  • PhD Student
  • Physician
  • Post-doc
  • Prize
  • Project Manager
  • Research Associate
  • Research Engineer
  • Retired scientist
  • Technician
  • Undergraduate Student
  • Veterinary
  • Visiting Scientist
  • Deputy Director of Center
  • Deputy Director of Department
  • Deputy Director of National Reference Center
  • Deputy Head of Facility
  • Director of Center
  • Director of Department
  • Director of Institute
  • Director of National Reference Center
  • Group Leader
  • Head of Facility
  • Head of Operations
  • Head of Structure
  • Honorary President of the Departement
  • Labex Coordinator
Content 2
  • member
  • team
  • department
  • center
  • program_project
  • nrc
  • whocc
  • project
  • software
  • tool
  • patent
  • Administrative Staff
  • Assistant Professor
  • Associate Professor
  • Clinical Research Assistant
  • Clinical Research Nurse
  • Clinician Researcher
  • Department Manager
  • Dual-education Student
  • Full Professor
  • Honorary Professor
  • Lab assistant
  • Master Student
  • Non-permanent Researcher
  • Nursing Staff
  • Permanent Researcher
  • Pharmacist
  • PhD Student
  • Physician
  • Post-doc
  • Prize
  • Project Manager
  • Research Associate
  • Research Engineer
  • Retired scientist
  • Technician
  • Undergraduate Student
  • Veterinary
  • Visiting Scientist
  • Deputy Director of Center
  • Deputy Director of Department
  • Deputy Director of National Reference Center
  • Deputy Head of Facility
  • Director of Center
  • Director of Department
  • Director of Institute
  • Director of National Reference Center
  • Group Leader
  • Head of Facility
  • Head of Operations
  • Head of Structure
  • Honorary President of the Departement
  • Labex Coordinator
Search

← Go to Research

Go back
Scroll to top
Share
© Research
Publication : European journal of biochemistry

Structural flexibility of the calmodulin-binding locus in Bordetella pertussis adenylate cyclase. Reconstitution of catalytically active species from fragments or inactive forms of the enzyme.

Scientific Fields
Diseases
Organisms
Applications
Technique

Published in European journal of biochemistry - 15 Oct 1993

Munier H, Bouhss A, Gilles AM, Krin E, Glaser P, Danchin A, Bârzu O,

Link to Pubmed [PMID] – 8223601

Eur J Biochem 1993 Oct; 217(2): 581-6

The catalytic domain of Bordetella pertussis adenylate cyclase, a calmodulin-activated enzyme with toxic properties, is a modular construct cleaved by trypsin into two subdomains of 224 (T25) and 175 (T18) amino acids. The calmodulin-binding locus of the bacterial enzyme consists of approximately 70 amino acids and overlaps the C-terminus of T25 and the N-terminus of T18. This region, exposed to the solvent or proteases, also exhibits an unusual high flexibility and allows, as demonstrated in this study, reconstitution in the presence of calmodulin of active species of adenylate cyclase from overlapping inactive fragments of the enzyme. Moreover, several combinations of inactive variants of the bacterial enzyme obtained by site-directed mutagenesis can yield active species. Heterodimers, resulting from a few selected combinations of inactive species of adenylate cyclase, exhibit specific activity similar to that of the native enzyme. Productive complementation from inactive fragments is a unique phenomenon among calmodulin-activated enzymes and represents a new and helpful tool in the understanding of the molecular mechanism of activation of B. pertussis adenylate cyclase upon binding of calmodulin.