Search anything and hit enter
  • Teams
  • Members
  • Projects
  • Events
  • Calls
  • Jobs
  • publications
  • Software
  • Tools
  • Network
  • Equipment

A little guide for advanced search:

  • Tip 1. You can use quotes "" to search for an exact expression.
    Example: "cell division"
  • Tip 2. You can use + symbol to restrict results containing all words.
    Example: +cell +stem
  • Tip 3. You can use + and - symbols to force inclusion or exclusion of specific words.
    Example: +cell -stem
e.g. searching for members in projects tagged cancer
Search for
Count
IN
OUT
Content 1
  • member
  • team
  • department
  • center
  • program_project
  • nrc
  • whocc
  • project
  • software
  • tool
  • patent
  • Administrative Staff
  • Assistant Professor
  • Associate Professor
  • Clinical Research Assistant
  • Full Professor
  • Graduate Student
  • Lab assistant
  • Non-permanent Researcher
  • Permanent Researcher
  • Pharmacist
  • PhD Student
  • Physician
  • Post-doc
  • Project Manager
  • Research Associate
  • Research Engineer
  • Retired scientist
  • Technician
  • Undergraduate Student
  • Veterinary
  • Visiting Scientist
  • Deputy Director of Center
  • Deputy Director of Department
  • Deputy Director of National Reference Center
  • Deputy Head of Facility
  • Director of Center
  • Director of Department
  • Director of Institute
  • Director of National Reference Center
  • Group Leader
  • Head of Facility
  • Head of Operations
  • Head of Structure
  • Honorary President of the Departement
  • Labex Coordinator
Content 2
  • member
  • team
  • department
  • center
  • program_project
  • nrc
  • whocc
  • project
  • software
  • tool
  • patent
  • Administrative Staff
  • Assistant Professor
  • Associate Professor
  • Clinical Research Assistant
  • Full Professor
  • Graduate Student
  • Lab assistant
  • Non-permanent Researcher
  • Permanent Researcher
  • Pharmacist
  • PhD Student
  • Physician
  • Post-doc
  • Project Manager
  • Research Associate
  • Research Engineer
  • Retired scientist
  • Technician
  • Undergraduate Student
  • Veterinary
  • Visiting Scientist
  • Deputy Director of Center
  • Deputy Director of Department
  • Deputy Director of National Reference Center
  • Deputy Head of Facility
  • Director of Center
  • Director of Department
  • Director of Institute
  • Director of National Reference Center
  • Group Leader
  • Head of Facility
  • Head of Operations
  • Head of Structure
  • Honorary President of the Departement
  • Labex Coordinator
Search
Go back
Scroll to top
Share
© Research
Publication : Molecular immunology

Specific over-expression of deltex and a new Kelch-like protein in human germinal center B cells

Scientific Fields
Diseases
Organisms
Applications
Technique

Published in Molecular immunology - 01 Mar 2003

Gupta-Rossi N, Storck S, Griebel PJ, Reynaud CA, Weill JC, Dahan A

Link to Pubmed [PMID] – 12617994

Mol. Immunol. 2003 Mar;39(13):791-9

Ig gene hypermutation was originally described as the molecular process underlying B cell affinity maturation following a T-dependent immune response. Somatic hypermutation is also used in some species such as sheep, to generate diversity during formation of the primary antibody repertoire. In sheep, B cells mutate their Ig receptor during antigen-independent development in the lymphoid follicles of ileal Peyer’s patches, but this process is arrested when these same B cells are cultured in vitro. We have used these differences between in vivo and in vitro B cell development to perform a cDNA subtraction between these two cell populations, in order to search for genes that might be involved in the hypermutation process. We describe in this paper the characterization of two genes, highly expressed in sheep ileal Peyer’s patch B cells and also in centroblasts of human tonsils: deltex (Drosophila) homolog 1 (DTX1), which is related to the Notch pathway and a new Kelch-like protein, KLHL6. The putative role of these proteins, which are more likely involved in the germinal center B cell differentiation pathway than in the hypermutation mechanism per se, is discussed.

http://www.ncbi.nlm.nih.gov/pubmed/12617994