Search anything and hit enter
  • Teams
  • Members
  • Projects
  • Events
  • Calls
  • Jobs
  • publications
  • Software
  • Tools
  • Network
  • Equipment

A little guide for advanced search:

  • Tip 1. You can use quotes "" to search for an exact expression.
    Example: "cell division"
  • Tip 2. You can use + symbol to restrict results containing all words.
    Example: +cell +stem
  • Tip 3. You can use + and - symbols to force inclusion or exclusion of specific words.
    Example: +cell -stem
e.g. searching for members in projects tagged cancer
Search for
Count
IN
OUT
Content 1
  • member
  • team
  • department
  • center
  • program_project
  • nrc
  • whocc
  • project
  • software
  • tool
  • patent
  • Administrative Staff
  • Assistant Professor
  • Associate Professor
  • Clinical Research Assistant
  • Full Professor
  • Graduate Student
  • Lab assistant
  • Non-permanent Researcher
  • Permanent Researcher
  • Pharmacist
  • PhD Student
  • Physician
  • Post-doc
  • Project Manager
  • Research Associate
  • Research Engineer
  • Retired scientist
  • Technician
  • Undergraduate Student
  • Veterinary
  • Visiting Scientist
  • Deputy Director of Center
  • Deputy Director of Department
  • Deputy Director of National Reference Center
  • Deputy Head of Facility
  • Director of Center
  • Director of Department
  • Director of Institute
  • Director of National Reference Center
  • Group Leader
  • Head of Facility
  • Head of Operations
  • Head of Structure
  • Honorary President of the Departement
  • Labex Coordinator
Content 2
  • member
  • team
  • department
  • center
  • program_project
  • nrc
  • whocc
  • project
  • software
  • tool
  • patent
  • Administrative Staff
  • Assistant Professor
  • Associate Professor
  • Clinical Research Assistant
  • Full Professor
  • Graduate Student
  • Lab assistant
  • Non-permanent Researcher
  • Permanent Researcher
  • Pharmacist
  • PhD Student
  • Physician
  • Post-doc
  • Project Manager
  • Research Associate
  • Research Engineer
  • Retired scientist
  • Technician
  • Undergraduate Student
  • Veterinary
  • Visiting Scientist
  • Deputy Director of Center
  • Deputy Director of Department
  • Deputy Director of National Reference Center
  • Deputy Head of Facility
  • Director of Center
  • Director of Department
  • Director of Institute
  • Director of National Reference Center
  • Group Leader
  • Head of Facility
  • Head of Operations
  • Head of Structure
  • Honorary President of the Departement
  • Labex Coordinator
Search
Go back
Scroll to top
Share
© Research
Publication : The Journal of biological chemistry

Self-association of the Escherichia coli transcription activator MalT in the presence of maltotriose and ATP

Scientific Fields
Diseases
Organisms
Applications
Technique

Published in The Journal of biological chemistry - 01 Nov 1999

Schreiber V, Richet E

Link to Pubmed [PMID] – 10559195

J. Biol. Chem. 1999 Nov;274(47):33220-6

MalT, the transcriptional activator of the Escherichia coli maltose regulon, binds the MalT-dependent promoters and activates transcription initiation only in the presence of maltotriose and ATP (or adenylyl imidodiphosphate (AMP-PNP)). Cooperative binding of MalT to the array of cognate sites present in the MalT-dependent promoters suggests that promoter binding involves MalT oligomerization. Gel filtration and sedimentation experiments were used to analyze the quaternary structure of MalT in solution in the absence or presence of maltotriose and/or AMP-PNP, ATP, or ADP. The protein is monomeric in the absence of ligands and in the presence of ADP. In the presence of maltotriose, AMP-PNP, or ATP only, the protein self-associates, but a large fraction of the protein remains monomeric. In the presence of both maltotriose and AMP-PNP (ATP or ADP), the protein is essentially oligomeric, with the difference being that the oligomerization is less favored in the presence of ADP + maltotriose than in the presence of AMP-PNP + maltotriose. We present evidence that the association pathway comprises the following steps: monomers –> dimers –> (MalT)(n) –> aggregates, where 3 </= n </= 6. From these data, we conclude that the role of maltotriose and ATP as positive effectors is to induce the multimerization of MalT, and hence its cooperative binding to the mal promoters.

http://www.ncbi.nlm.nih.gov/pubmed/10559195