Search anything and hit enter
  • Teams
  • Members
  • Projects
  • Events
  • Calls
  • Jobs
  • publications
  • Software
  • Tools
  • Network
  • Equipment

A little guide for advanced search:

  • Tip 1. You can use quotes "" to search for an exact expression.
    Example: "cell division"
  • Tip 2. You can use + symbol to restrict results containing all words.
    Example: +cell +stem
  • Tip 3. You can use + and - symbols to force inclusion or exclusion of specific words.
    Example: +cell -stem
e.g. searching for members in projects tagged cancer
Search for
Count
IN
OUT
Content 1
  • member
  • team
  • department
  • center
  • program_project
  • nrc
  • whocc
  • project
  • software
  • tool
  • patent
  • Administrative Staff
  • Assistant Professor
  • Associate Professor
  • Clinical Research Assistant
  • Clinical Research Nurse
  • Clinician Researcher
  • Department Manager
  • Dual-education Student
  • Full Professor
  • Honorary Professor
  • Lab assistant
  • Master Student
  • Non-permanent Researcher
  • Nursing Staff
  • Permanent Researcher
  • Pharmacist
  • PhD Student
  • Physician
  • Post-doc
  • Prize
  • Project Manager
  • Research Associate
  • Research Engineer
  • Retired scientist
  • Technician
  • Undergraduate Student
  • Veterinary
  • Visiting Scientist
  • Deputy Director of Center
  • Deputy Director of Department
  • Deputy Director of National Reference Center
  • Deputy Head of Facility
  • Director of Center
  • Director of Department
  • Director of Institute
  • Director of National Reference Center
  • Group Leader
  • Head of Facility
  • Head of Operations
  • Head of Structure
  • Honorary President of the Departement
  • Labex Coordinator
Content 2
  • member
  • team
  • department
  • center
  • program_project
  • nrc
  • whocc
  • project
  • software
  • tool
  • patent
  • Administrative Staff
  • Assistant Professor
  • Associate Professor
  • Clinical Research Assistant
  • Clinical Research Nurse
  • Clinician Researcher
  • Department Manager
  • Dual-education Student
  • Full Professor
  • Honorary Professor
  • Lab assistant
  • Master Student
  • Non-permanent Researcher
  • Nursing Staff
  • Permanent Researcher
  • Pharmacist
  • PhD Student
  • Physician
  • Post-doc
  • Prize
  • Project Manager
  • Research Associate
  • Research Engineer
  • Retired scientist
  • Technician
  • Undergraduate Student
  • Veterinary
  • Visiting Scientist
  • Deputy Director of Center
  • Deputy Director of Department
  • Deputy Director of National Reference Center
  • Deputy Head of Facility
  • Director of Center
  • Director of Department
  • Director of Institute
  • Director of National Reference Center
  • Group Leader
  • Head of Facility
  • Head of Operations
  • Head of Structure
  • Honorary President of the Departement
  • Labex Coordinator
Search

← Go to Research

Go back
Scroll to top
Share
© Research
Publication : The Journal of biological chemistry

S1 ribosomal protein functions in translation initiation and ribonuclease RegB activation are mediated by similar RNA-protein interactions: an NMR and SAXS analysis

Scientific Fields
Diseases
Organisms
Applications
Technique

Published in The Journal of biological chemistry - 22 Jan 2008

Aliprandi P, Sizun C, Perez J, Mareuil F, Caputo S, Leroy JL, Odaert B, Laalami S, Uzan M, Bontems F

Link to Pubmed [PMID] – 18211890

J. Biol. Chem. 2008 May;283(19):13289-301

The ribosomal protein S1, in Escherichia coli, is necessary for the recognition by the ribosome of the translation initiation codon of most messenger RNAs. It also participates in other functions. In particular, it stimulates the T4 endoribonuclease RegB, which inactivates some of the phage mRNAs, when their translation is no longer required, by cleaving them in the middle of their Shine-Dalgarno sequence. In each function, S1 seems to target very different RNAs, which led to the hypothesis that it possesses different RNA-binding sites. We previously demonstrated that the ability of S1 to activate RegB is carried by a fragment of the protein formed of three consecutive domains (domains D3, D4, and D5). The same fragment plays a central role in all other functions. We analyzed its structural organization and its interactions with three RNAs: two RegB substrates and a translation initiation region. We show that these three RNAs bind the same area of the protein through a set of systematic (common to the three RNAs) and specific (RNA-dependent) interactions. We also show that, in the absence of RNA, the D4 and D5 domains are associated, whereas the D3 and D4 domains are in equilibrium between open (noninteracting) and closed (weakly interacting) forms and that RNA binding induces a structural reorganization of the fragment. All of these results suggest that the ability of S1 to recognize different RNAs results from a high adaptability of both its structure and its binding surface.