Link to Pubmed [PMID] – 27553073
Link to DOI – 10.1016/j.nano.2016.08.006S1549-9634(16)30114-9
Nanomedicine 2017 Feb; 13(2): 411-420
Respiratory syncytial virus (RSV) is the leading cause of acute respiratory infections in children, yet no vaccine is available. The sole licensed preventive treatment against RSV is composed of a monoclonal neutralizing antibody (palivizumab), which targets a conformational epitope located on the fusion protein (F). Palivizumab reduces the burden of bronchiolitis but does not prevent infection. Thus, the development of RSV vaccines remains a priority. We previously evaluated nanorings formed by RSV nucleoprotein (N) as an RSV vaccine, as well as an immunostimulatory carrier for heterologous antigens. Here, we linked the palivizumab-targeted epitope (called FsII) to N, to generate N-FsII-nanorings. Intranasal N-FsII immunization elicited anti-F antibodies in mice that were non-neutralizing in vitro. Nevertheless, RSV-challenged animals were better protected against virus replication than mice immunized with N-nanorings, especially in the upper airways. In conclusion, an N-FsII-focused vaccine is an attractive candidate combining N-specific cellular immunity and F-specific antibodies for protection.