Search anything and hit enter
  • Teams
  • Members
  • Projects
  • Events
  • Calls
  • Jobs
  • publications
  • Software
  • Tools
  • Network
  • Equipment

A little guide for advanced search:

  • Tip 1. You can use quotes "" to search for an exact expression.
    Example: "cell division"
  • Tip 2. You can use + symbol to restrict results containing all words.
    Example: +cell +stem
  • Tip 3. You can use + and - symbols to force inclusion or exclusion of specific words.
    Example: +cell -stem
e.g. searching for members in projects tagged cancer
Search for
Count
IN
OUT
Content 1
  • member
  • team
  • department
  • center
  • program_project
  • nrc
  • whocc
  • project
  • software
  • tool
  • patent
  • Administrative Staff
  • Assistant Professor
  • Associate Professor
  • Clinical Research Assistant
  • Clinical Research Nurse
  • Clinician Researcher
  • Department Manager
  • Dual-education Student
  • Full Professor
  • Honorary Professor
  • Lab assistant
  • Master Student
  • Non-permanent Researcher
  • Nursing Staff
  • Permanent Researcher
  • Pharmacist
  • PhD Student
  • Physician
  • Post-doc
  • Prize
  • Project Manager
  • Research Associate
  • Research Engineer
  • Retired scientist
  • Technician
  • Undergraduate Student
  • Veterinary
  • Visiting Scientist
  • Deputy Director of Center
  • Deputy Director of Department
  • Deputy Director of National Reference Center
  • Deputy Head of Facility
  • Director of Center
  • Director of Department
  • Director of Institute
  • Director of National Reference Center
  • Group Leader
  • Head of Facility
  • Head of Operations
  • Head of Structure
  • Honorary President of the Departement
  • Labex Coordinator
Content 2
  • member
  • team
  • department
  • center
  • program_project
  • nrc
  • whocc
  • project
  • software
  • tool
  • patent
  • Administrative Staff
  • Assistant Professor
  • Associate Professor
  • Clinical Research Assistant
  • Clinical Research Nurse
  • Clinician Researcher
  • Department Manager
  • Dual-education Student
  • Full Professor
  • Honorary Professor
  • Lab assistant
  • Master Student
  • Non-permanent Researcher
  • Nursing Staff
  • Permanent Researcher
  • Pharmacist
  • PhD Student
  • Physician
  • Post-doc
  • Prize
  • Project Manager
  • Research Associate
  • Research Engineer
  • Retired scientist
  • Technician
  • Undergraduate Student
  • Veterinary
  • Visiting Scientist
  • Deputy Director of Center
  • Deputy Director of Department
  • Deputy Director of National Reference Center
  • Deputy Head of Facility
  • Director of Center
  • Director of Department
  • Director of Institute
  • Director of National Reference Center
  • Group Leader
  • Head of Facility
  • Head of Operations
  • Head of Structure
  • Honorary President of the Departement
  • Labex Coordinator
Search
Go back
Scroll to top
Share
© Research
Publication : G3 (Bethesda, Md.)

RNA-seq-Based Gene Annotation and Comparative Genomics of Four Fungal Grass Pathogens in the Genus Zymoseptoria Identify Novel Orphan Genes and Species-Specific Invasions of Transposable Elements

Scientific Fields
Diseases
Organisms
Applications
Technique

Published in G3 (Bethesda, Md.) - 27 Apr 2015

Grandaubert J, Bhattacharyya A, Stukenbrock EH

Link to Pubmed [PMID] – 25917918

G3 (Bethesda) 2015 Apr;5(7):1323-33

The fungal pathogen Zymoseptoria tritici (synonym Mycosphaerella graminicola) is a prominent pathogen of wheat. The reference genome of the isolate IPO323 is one of the best-assembled eukaryotic genomes and encodes more than 10,000 predicted genes. However, a large proportion of the previously annotated gene models are incomplete, with either no start or no stop codons. The availability of RNA-seq data allows better predictions of gene structure. We here used two different RNA-seq datasets, de novo transcriptome assemblies, homology-based comparisons, and trained ab initio gene callers to generate a new gene annotation of Z. tritici IPO323. The annotation pipeline was also applied to re-sequenced genomes of three closely related species of Z. tritici: Z. pseudotritici, Z. ardabiliae, and Z. brevis. Comparative analyses of the predicted gene models using the four Zymoseptoria species revealed sets of species-specific orphan genes enriched with putative pathogenicity-related genes encoding small secreted proteins that may play essential roles in virulence and host specificity. De novo repeat identification allowed us to show that few families of transposable elements are shared between Zymoseptoria species while we observe many species-specific invasions and expansions. The annotation data presented here provide a high-quality resource for future studies of Z. tritici and its sister species and provide detailed insight into gene and genome evolution of fungal plant pathogens.