Search anything and hit enter
  • Teams
  • Members
  • Projects
  • Events
  • Calls
  • Jobs
  • publications
  • Software
  • Tools
  • Network
  • Equipment

A little guide for advanced search:

  • Tip 1. You can use quotes "" to search for an exact expression.
    Example: "cell division"
  • Tip 2. You can use + symbol to restrict results containing all words.
    Example: +cell +stem
  • Tip 3. You can use + and - symbols to force inclusion or exclusion of specific words.
    Example: +cell -stem
e.g. searching for members in projects tagged cancer
Search for
Count
IN
OUT
Content 1
  • member
  • team
  • department
  • center
  • program_project
  • nrc
  • whocc
  • project
  • software
  • tool
  • patent
  • Administrative Staff
  • Assistant Professor
  • Associate Professor
  • Clinical Research Assistant
  • Clinical Research Nurse
  • Clinician Researcher
  • Department Manager
  • Dual-education Student
  • Full Professor
  • Honorary Professor
  • Lab assistant
  • Master Student
  • Non-permanent Researcher
  • Nursing Staff
  • Permanent Researcher
  • Pharmacist
  • PhD Student
  • Physician
  • Post-doc
  • Prize
  • Project Manager
  • Research Associate
  • Research Engineer
  • Retired scientist
  • Technician
  • Undergraduate Student
  • Veterinary
  • Visiting Scientist
  • Deputy Director of Center
  • Deputy Director of Department
  • Deputy Director of National Reference Center
  • Deputy Head of Facility
  • Director of Center
  • Director of Department
  • Director of Institute
  • Director of National Reference Center
  • Group Leader
  • Head of Facility
  • Head of Operations
  • Head of Structure
  • Honorary President of the Departement
  • Labex Coordinator
Content 2
  • member
  • team
  • department
  • center
  • program_project
  • nrc
  • whocc
  • project
  • software
  • tool
  • patent
  • Administrative Staff
  • Assistant Professor
  • Associate Professor
  • Clinical Research Assistant
  • Clinical Research Nurse
  • Clinician Researcher
  • Department Manager
  • Dual-education Student
  • Full Professor
  • Honorary Professor
  • Lab assistant
  • Master Student
  • Non-permanent Researcher
  • Nursing Staff
  • Permanent Researcher
  • Pharmacist
  • PhD Student
  • Physician
  • Post-doc
  • Prize
  • Project Manager
  • Research Associate
  • Research Engineer
  • Retired scientist
  • Technician
  • Undergraduate Student
  • Veterinary
  • Visiting Scientist
  • Deputy Director of Center
  • Deputy Director of Department
  • Deputy Director of National Reference Center
  • Deputy Head of Facility
  • Director of Center
  • Director of Department
  • Director of Institute
  • Director of National Reference Center
  • Group Leader
  • Head of Facility
  • Head of Operations
  • Head of Structure
  • Honorary President of the Departement
  • Labex Coordinator
Search
Go back
Scroll to top
Share
© Research
Publication : Comptes rendus biologies

Replication of hexitol oligonucleotides as a prelude to the propagation of a third type of nucleic acid in vivo

Scientific Fields
Diseases
Organisms
Applications
Technique

Published in Comptes rendus biologies - 01 Dec 2003

Pochet S, Kaminski PA, Van Aerschot A, Herdewijn P, Marlière P

Link to Pubmed [PMID] – 14746272

C. R. Biol. 2003 Dec;326(12):1175-84

No backbone motif other than phospho-ribose and phospho-deoxyribose has been found in natural nucleic acids, currently restricting the molecular types of replicable biopolymers to DNA and RNA. With the aim of propagating and expressing a third type of nucleic acid in vivo, we assessed the replicability of polynucleotides with a phospho-hexitol backbone (HNA) in vivo and in vitro. Faithful polymerisation of up to four deoxynucleotides templated by hexitol oligonucleotides was established in vitro using DNA polymerase from Escherichia coli (PolA Klenow exo-fragment) and Thermus aquaticus (Taq polymerase). Condensation of up to three successive hTTPs (hexitol thymidine triphosphate) in responses to a pentameric hexitol template (hA)5 could also be demonstrated in vitro. Such a marginal HNA-dependent HNA polymerase activity of natural polymerases may be evolved in the future to catalyse in vitro amplification of HNA. The transmission of a two-codon-long genetic message carried on a hexameric hexitol template was also established using a selection screen for restoring thymidylate synthase activity in E. coli. These results exemplify the potential that can be explored by converting artificial substrates with natural enzymes in the field of informational polymer synthesis.