Search anything and hit enter
  • Teams
  • Members
  • Projects
  • Events
  • Calls
  • Jobs
  • publications
  • Software
  • Tools
  • Network
  • Equipment

A little guide for advanced search:

  • Tip 1. You can use quotes "" to search for an exact expression.
    Example: "cell division"
  • Tip 2. You can use + symbol to restrict results containing all words.
    Example: +cell +stem
  • Tip 3. You can use + and - symbols to force inclusion or exclusion of specific words.
    Example: +cell -stem
e.g. searching for members in projects tagged cancer
Search for
Count
IN
OUT
Content 1
  • member
  • team
  • department
  • center
  • program_project
  • nrc
  • whocc
  • project
  • software
  • tool
  • patent
  • Administrative Staff
  • Assistant Professor
  • Associate Professor
  • Clinical Research Assistant
  • Full Professor
  • Graduate Student
  • Lab assistant
  • Non-permanent Researcher
  • Permanent Researcher
  • Pharmacist
  • PhD Student
  • Physician
  • Post-doc
  • Project Manager
  • Research Associate
  • Research Engineer
  • Retired scientist
  • Technician
  • Undergraduate Student
  • Veterinary
  • Visiting Scientist
  • Deputy Director of Center
  • Deputy Director of Department
  • Deputy Director of National Reference Center
  • Deputy Head of Facility
  • Director of Center
  • Director of Department
  • Director of Institute
  • Director of National Reference Center
  • Group Leader
  • Head of Facility
  • Head of Operations
  • Head of Structure
  • Honorary President of the Departement
  • Labex Coordinator
Content 2
  • member
  • team
  • department
  • center
  • program_project
  • nrc
  • whocc
  • project
  • software
  • tool
  • patent
  • Administrative Staff
  • Assistant Professor
  • Associate Professor
  • Clinical Research Assistant
  • Full Professor
  • Graduate Student
  • Lab assistant
  • Non-permanent Researcher
  • Permanent Researcher
  • Pharmacist
  • PhD Student
  • Physician
  • Post-doc
  • Project Manager
  • Research Associate
  • Research Engineer
  • Retired scientist
  • Technician
  • Undergraduate Student
  • Veterinary
  • Visiting Scientist
  • Deputy Director of Center
  • Deputy Director of Department
  • Deputy Director of National Reference Center
  • Deputy Head of Facility
  • Director of Center
  • Director of Department
  • Director of Institute
  • Director of National Reference Center
  • Group Leader
  • Head of Facility
  • Head of Operations
  • Head of Structure
  • Honorary President of the Departement
  • Labex Coordinator
Search
Go back
Scroll to top
Share
© Artur Scherf
Scanning Electron Microscopy of Red Blood Cell infected by Plasmodium falciparum.
Publication : Molecular and biochemical parasitology

Regulation of surface coat exchange by differentiating African trypanosomes

Scientific Fields
Diseases
Organisms
Applications
Technique

Published in Molecular and biochemical parasitology - 09 Mar 2006

Gruszynski AE, van Deursen FJ, Albareda MC, Best A, Chaudhary K, Cliffe LJ, del Rio L, Dunn JD, Ellis L, Evans KJ, Figueiredo JM, Malmquist NA, Omosun Y, Palenchar JB, Prickett S, Punkosdy GA, van Dooren G, Wang Q, Menon AK, Matthews KR, Bangs JD

Link to Pubmed [PMID] – 16564583

Mol. Biochem. Parasitol. 2006 Jun;147(2):211-23

African trypanosomes (Trypanosoma brucei) have a digenetic lifecycle that alternates between the mammalian bloodstream and the tsetse fly vector. In the bloodstream, replicating long slender parasites transform into non-dividing short stumpy forms. Upon transmission into the fly midgut, short stumpy cells differentiate into actively dividing procyclics. A hallmark of this process is the replacement of the bloodstream-stage surface coat composed of variant surface glycoprotein (VSG) with a new coat composed of procyclin. Pre-existing VSG is shed by a zinc metalloprotease activity (MSP-B) and glycosylphosphatidylinositol-specific phospholipase C (GPI-PLC). We now provide a detailed analysis of the coordinate and inverse regulation of these activities during synchronous differentiation. MSP-B mRNA and protein levels are upregulated during differentiation at the same time as proteolysis whereas GPI-PLC levels decrease. When transcription or translation is inhibited, VSG release is incomplete and a substantial amount of protein stays cell-associated. Both modes of release are still evident under these conditions, but GPI hydrolysis plays a quantitatively minor role during normal differentiation. Nevertheless, GPI biosynthesis shifts early in differentiation from a GPI-PLC sensitive structure to a resistant procyclic-type anchor. Translation inhibition also results in a marked increase in the mRNA levels of both MSP-B and GPI-PLC, consistent with negative regulation by labile protein factors. The relegation of short stumpy surface GPI-PLC to a secondary role in differentiation suggests that it may play a more important role as a virulence factor within the mammalian host.

http://www.ncbi.nlm.nih.gov/pubmed/16564583