Search anything and hit enter
  • Teams
  • Members
  • Projects
  • Events
  • Calls
  • Jobs
  • publications
  • Software
  • Tools
  • Network
  • Equipment

A little guide for advanced search:

  • Tip 1. You can use quotes "" to search for an exact expression.
    Example: "cell division"
  • Tip 2. You can use + symbol to restrict results containing all words.
    Example: +cell +stem
  • Tip 3. You can use + and - symbols to force inclusion or exclusion of specific words.
    Example: +cell -stem
e.g. searching for members in projects tagged cancer
Search for
Count
IN
OUT
Content 1
  • member
  • team
  • department
  • center
  • program_project
  • nrc
  • whocc
  • project
  • software
  • tool
  • patent
  • Administrative Staff
  • Assistant Professor
  • Associate Professor
  • Clinical Research Assistant
  • Clinical Research Nurse
  • Clinician Researcher
  • Department Manager
  • Dual-education Student
  • Full Professor
  • Honorary Professor
  • Lab assistant
  • Master Student
  • Non-permanent Researcher
  • Nursing Staff
  • Permanent Researcher
  • Pharmacist
  • PhD Student
  • Physician
  • Post-doc
  • Prize
  • Project Manager
  • Research Associate
  • Research Engineer
  • Retired scientist
  • Technician
  • Undergraduate Student
  • Veterinary
  • Visiting Scientist
  • Deputy Director of Center
  • Deputy Director of Department
  • Deputy Director of National Reference Center
  • Deputy Head of Facility
  • Director of Center
  • Director of Department
  • Director of Institute
  • Director of National Reference Center
  • Group Leader
  • Head of Facility
  • Head of Operations
  • Head of Structure
  • Honorary President of the Departement
  • Labex Coordinator
Content 2
  • member
  • team
  • department
  • center
  • program_project
  • nrc
  • whocc
  • project
  • software
  • tool
  • patent
  • Administrative Staff
  • Assistant Professor
  • Associate Professor
  • Clinical Research Assistant
  • Clinical Research Nurse
  • Clinician Researcher
  • Department Manager
  • Dual-education Student
  • Full Professor
  • Honorary Professor
  • Lab assistant
  • Master Student
  • Non-permanent Researcher
  • Nursing Staff
  • Permanent Researcher
  • Pharmacist
  • PhD Student
  • Physician
  • Post-doc
  • Prize
  • Project Manager
  • Research Associate
  • Research Engineer
  • Retired scientist
  • Technician
  • Undergraduate Student
  • Veterinary
  • Visiting Scientist
  • Deputy Director of Center
  • Deputy Director of Department
  • Deputy Director of National Reference Center
  • Deputy Head of Facility
  • Director of Center
  • Director of Department
  • Director of Institute
  • Director of National Reference Center
  • Group Leader
  • Head of Facility
  • Head of Operations
  • Head of Structure
  • Honorary President of the Departement
  • Labex Coordinator
Search

← Go to Research

Go back
Scroll to top
Share
© Research
Publication : Biology open

Regulation of cortical stability by RhoGEF3 in mitotic Sensory Organ Precursor cells in Drosophila.

Scientific Fields
Diseases
Organisms
Applications
Technique

Published in Biology open - 15 Dec 2017

Couturier L, Mazouni K, Bernard F, Besson C, Reynaud E, Schweisguth F

Link to Pubmed [PMID] – 29101098

Link to DOI – 10.1242/bio.026641

Biol Open 2017 Dec; 6(12): 1851-1860

In epithelia, mitotic cells round up and push against their neighbors to divide. Mitotic rounding results from increased assembly of F-actin and cortical recruitment of Myosin II, leading to increased cortical stability. Whether this process is developmentally regulated is not well known. Here, we examined the regulation of cortical stability in Sensory Organ Precursor cells (SOPs) in the Drosophila pupal notum. SOPs differed in apical shape and actomyosin dynamics from their epidermal neighbors prior to division, and appeared to have a more rigid cortex at mitosis. We identified RhoGEF3 as an actin regulator expressed at higher levels in SOPs, and showed that RhoGEF3 had in vitro GTPase Exchange Factor (GEF) activity for Cdc42. Additionally, RhoGEF3 genetically interacted with both Cdc42 and Rac1 when overexpressed in the fly eye. Using a null RhoGEF3 mutation generated by CRISPR-mediated homologous recombination, we showed using live imaging that the RhoGEF3 gene, despite being dispensable for normal development, contributed to cortical stability in dividing SOPs. We therefore suggest that cortical stability is developmentally regulated in dividing SOPs of the fly notum.