Search anything and hit enter
  • Teams
  • Members
  • Projects
  • Events
  • Calls
  • Jobs
  • publications
  • Software
  • Tools
  • Network
  • Equipment

A little guide for advanced search:

  • Tip 1. You can use quotes "" to search for an exact expression.
    Example: "cell division"
  • Tip 2. You can use + symbol to restrict results containing all words.
    Example: +cell +stem
  • Tip 3. You can use + and - symbols to force inclusion or exclusion of specific words.
    Example: +cell -stem
e.g. searching for members in projects tagged cancer
Search for
Count
IN
OUT
Content 1
  • member
  • team
  • department
  • center
  • program_project
  • nrc
  • whocc
  • project
  • software
  • tool
  • patent
  • Administrative Staff
  • Assistant Professor
  • Associate Professor
  • Clinical Research Assistant
  • Full Professor
  • Graduate Student
  • Lab assistant
  • Non-permanent Researcher
  • Permanent Researcher
  • Pharmacist
  • PhD Student
  • Physician
  • Post-doc
  • Project Manager
  • Research Associate
  • Research Engineer
  • Retired scientist
  • Technician
  • Undergraduate Student
  • Veterinary
  • Visiting Scientist
  • Deputy Director of Center
  • Deputy Director of Department
  • Deputy Director of National Reference Center
  • Deputy Head of Facility
  • Director of Center
  • Director of Department
  • Director of Institute
  • Director of National Reference Center
  • Group Leader
  • Head of Facility
  • Head of Operations
  • Head of Structure
  • Honorary President of the Departement
  • Labex Coordinator
Content 2
  • member
  • team
  • department
  • center
  • program_project
  • nrc
  • whocc
  • project
  • software
  • tool
  • patent
  • Administrative Staff
  • Assistant Professor
  • Associate Professor
  • Clinical Research Assistant
  • Full Professor
  • Graduate Student
  • Lab assistant
  • Non-permanent Researcher
  • Permanent Researcher
  • Pharmacist
  • PhD Student
  • Physician
  • Post-doc
  • Project Manager
  • Research Associate
  • Research Engineer
  • Retired scientist
  • Technician
  • Undergraduate Student
  • Veterinary
  • Visiting Scientist
  • Deputy Director of Center
  • Deputy Director of Department
  • Deputy Director of National Reference Center
  • Deputy Head of Facility
  • Director of Center
  • Director of Department
  • Director of Institute
  • Director of National Reference Center
  • Group Leader
  • Head of Facility
  • Head of Operations
  • Head of Structure
  • Honorary President of the Departement
  • Labex Coordinator
Search
Go back
Scroll to top
Share
© Research
Publication : Nucleic acids research

Recognition of exonic splicing enhancer sequences by the Drosophila splicing repressor RSF1

Scientific Fields
Diseases
Organisms
Applications
Technique

Published in Nucleic acids research - 01 Jun 1999

Labourier E, Allemand E, Brand S, Fostier M, Tazi J, Bourbon HM

Link to Pubmed [PMID] – 10325428

Nucleic Acids Res. 1999 Jun;27(11):2377-86

The Drosophila repressor splicing factor 1 (RSF1) comprises an N-terminal RNA-binding region and a C-terminal domain rich in glycine, arginine and serine residues, termed the GRS domain. Recently, RSF1 has been shown to antagonize splicing factors of the serine/arginine-rich (SR) family and it is, therefore, expected to play a role in processing of a subset of Drosophila pre-mRNAs through specific interactions with RNA. To investigate the RNA-binding specificity of RSF1, we isolated RSF1-binding RNAs using an in vitro selection approach. We have identified two RNA target motifs recognized by RSF1, designated A (CAACGACGA)- and B (AAACGCGCG)-type sequences. We show here that the A-type cognate sequence behaves as an SR protein-dependent exonic splicing enhancer. Namely, three copies of the A-type ligand bind SR proteins, stimulate the efficiency of splicing of reporter pre-mRNAs several fold and lead to inclusion of a short internal exon both in vitro and in vivo. However, three copies of a B-type ligand were much less active. The finding that RSF1 acts as a potent repressor of pre-mRNA splicing in vitro led us to propose that the equilibrium between a limited number of structurally-related general splicing activators or repressors, competing for common or promiscuous binding sites, may be a major determinant of the underlying mechanisms controlling many alternative pre-mRNA process-ing events.

http://www.ncbi.nlm.nih.gov/pubmed/10325428