Search anything and hit enter
  • Teams
  • Members
  • Projects
  • Events
  • Calls
  • Jobs
  • publications
  • Software
  • Tools
  • Network
  • Equipment

A little guide for advanced search:

  • Tip 1. You can use quotes "" to search for an exact expression.
    Example: "cell division"
  • Tip 2. You can use + symbol to restrict results containing all words.
    Example: +cell +stem
  • Tip 3. You can use + and - symbols to force inclusion or exclusion of specific words.
    Example: +cell -stem
e.g. searching for members in projects tagged cancer
Search for
Count
IN
OUT
Content 1
  • member
  • team
  • department
  • center
  • program_project
  • nrc
  • whocc
  • project
  • software
  • tool
  • patent
  • Administrative Staff
  • Assistant Professor
  • Associate Professor
  • Clinical Research Assistant
  • Full Professor
  • Graduate Student
  • Lab assistant
  • Non-permanent Researcher
  • Permanent Researcher
  • Pharmacist
  • PhD Student
  • Physician
  • Post-doc
  • Project Manager
  • Research Associate
  • Research Engineer
  • Retired scientist
  • Technician
  • Undergraduate Student
  • Veterinary
  • Visiting Scientist
  • Deputy Director of Center
  • Deputy Director of Department
  • Deputy Director of National Reference Center
  • Deputy Head of Facility
  • Director of Center
  • Director of Department
  • Director of Institute
  • Director of National Reference Center
  • Group Leader
  • Head of Facility
  • Head of Operations
  • Head of Structure
  • Honorary President of the Departement
  • Labex Coordinator
Content 2
  • member
  • team
  • department
  • center
  • program_project
  • nrc
  • whocc
  • project
  • software
  • tool
  • patent
  • Administrative Staff
  • Assistant Professor
  • Associate Professor
  • Clinical Research Assistant
  • Full Professor
  • Graduate Student
  • Lab assistant
  • Non-permanent Researcher
  • Permanent Researcher
  • Pharmacist
  • PhD Student
  • Physician
  • Post-doc
  • Project Manager
  • Research Associate
  • Research Engineer
  • Retired scientist
  • Technician
  • Undergraduate Student
  • Veterinary
  • Visiting Scientist
  • Deputy Director of Center
  • Deputy Director of Department
  • Deputy Director of National Reference Center
  • Deputy Head of Facility
  • Director of Center
  • Director of Department
  • Director of Institute
  • Director of National Reference Center
  • Group Leader
  • Head of Facility
  • Head of Operations
  • Head of Structure
  • Honorary President of the Departement
  • Labex Coordinator
Search
Go back
Scroll to top
Share
© Research
Publication : Proceedings of the National Academy of Sciences of the United States of America

RB and hbrm cooperate to repress the activation functions of E2F1

Scientific Fields
Diseases
Organisms
Applications
Technique

Published in Proceedings of the National Academy of Sciences of the United States of America - 14 Oct 1997

Trouche D, Le Chalony C, Muchardt C, Yaniv M, Kouzarides T

Link to Pubmed [PMID] – 9326598

Proc. Natl. Acad. Sci. U.S.A. 1997 Oct;94(21):11268-73

Forced expression of the retinoblastoma (RB) gene product inhibits the proliferation of cells in culture. A major target of the RB protein is the S-phase-inducing transcription factor E2F1. RB binds directly to the activation domain of E2F1 and silences it, thereby preventing cells from entering S phase. To induce complete G1 arrest, RB requires the presence of the hbrm/BRG-1 proteins, which are components of the coactivator SWI/SNF complex. This cooperation is mediated through a physical interaction between RB and hbrm/BRG-1. We show here that in transfected cells RB can contact both E2F1 and hbrm at the same time, thereby targeting hbrm to E2F1. E2F1 and hbrm are indeed found within the same complex in vivo. Furthermore, RB and hbrm cooperate to repress E2F1 activity in transient transfection assays. The ability of hbrm to cooperate with RB to repress E2F1 is dependent upon several distinct domains of hbrm, including the RB binding domain and the NTP binding site. However, the bromodomain seems dispensable for this activity. Taken together, our results point out an unexpected role of corepressor for the hbrm protein. The ability of hbrm and RB to cooperate in repressing E2F1 activity could be an underlying mechanism for the observed cooperation between hbrm and RB to induce G1 arrest. Finally, we demonstrate that the domain of hbrm that binds RB has transcriptional activation potential which RB can repress. This suggest that RB not only targets hbrm but also regulates its activity.

http://www.ncbi.nlm.nih.gov/pubmed/9326598