Search anything and hit enter
  • Teams
  • Members
  • Projects
  • Events
  • Calls
  • Jobs
  • publications
  • Software
  • Tools
  • Network
  • Equipment

A little guide for advanced search:

  • Tip 1. You can use quotes "" to search for an exact expression.
    Example: "cell division"
  • Tip 2. You can use + symbol to restrict results containing all words.
    Example: +cell +stem
  • Tip 3. You can use + and - symbols to force inclusion or exclusion of specific words.
    Example: +cell -stem
e.g. searching for members in projects tagged cancer
Search for
Count
IN
OUT
Content 1
  • member
  • team
  • department
  • center
  • program_project
  • nrc
  • whocc
  • project
  • software
  • tool
  • patent
  • Administrative Staff
  • Assistant Professor
  • Associate Professor
  • Clinical Research Assistant
  • Full Professor
  • Graduate Student
  • Lab assistant
  • Non-permanent Researcher
  • Permanent Researcher
  • Pharmacist
  • PhD Student
  • Physician
  • Post-doc
  • Project Manager
  • Research Associate
  • Research Engineer
  • Retired scientist
  • Technician
  • Undergraduate Student
  • Veterinary
  • Visiting Scientist
  • Deputy Director of Center
  • Deputy Director of Department
  • Deputy Director of National Reference Center
  • Deputy Head of Facility
  • Director of Center
  • Director of Department
  • Director of Institute
  • Director of National Reference Center
  • Group Leader
  • Head of Facility
  • Head of Operations
  • Head of Structure
  • Honorary President of the Departement
  • Labex Coordinator
Content 2
  • member
  • team
  • department
  • center
  • program_project
  • nrc
  • whocc
  • project
  • software
  • tool
  • patent
  • Administrative Staff
  • Assistant Professor
  • Associate Professor
  • Clinical Research Assistant
  • Full Professor
  • Graduate Student
  • Lab assistant
  • Non-permanent Researcher
  • Permanent Researcher
  • Pharmacist
  • PhD Student
  • Physician
  • Post-doc
  • Project Manager
  • Research Associate
  • Research Engineer
  • Retired scientist
  • Technician
  • Undergraduate Student
  • Veterinary
  • Visiting Scientist
  • Deputy Director of Center
  • Deputy Director of Department
  • Deputy Director of National Reference Center
  • Deputy Head of Facility
  • Director of Center
  • Director of Department
  • Director of Institute
  • Director of National Reference Center
  • Group Leader
  • Head of Facility
  • Head of Operations
  • Head of Structure
  • Honorary President of the Departement
  • Labex Coordinator
Search
Go back
Scroll to top
Share
© Research
Publication : Spectrochimica acta. Part A, Molecular and biomolecular spectroscopy

Probing the lateral organization of membranes: fluorescence repercussions of pyrene probe distribution

Scientific Fields
Diseases
Organisms
Applications
Technique

Published in Spectrochimica acta. Part A, Molecular and biomolecular spectroscopy - 14 Sep 2001

Mazères S, Lagane B, Welby M, Trégou V, Lopez A

Link to Pubmed [PMID] – 11603845

Spectrochim Acta A Mol Biomol Spectrosc 2001 Sep;57(11):2297-311

Phospholipids pyrene labeled are widely used to investigate dynamics and organizations of membranes. We studied pyrene probe lateral distribution by analyzing the variations of the molar absorption coefficient (epsilon) versus probe concentrations, in small unilamellar vesicles (SUV) made of phospholipids and/or glycolipids, with pyrene labeled phosphatidylcholine (PyPC) or phosphatidylglycerol (PyPG). The results were interpreted according to an infinite associative model. They indicated that an effective self-association process corresponding to K ranging from 30 to 100 M(-1) occurred with those probes incorporated in dimannosyl diacylglycerol (DMDG). In contrast, after SUV labeling of egg yolk phosphatidylcholine (EggPC) or phosphatidylglycerol (EggPG), K values < 1 M(-1) were determined. The corresponding percentages of various stacked forms of pyrene probes were calculated. They indicated that, for a 3% PyPG labeling, the monomer represented 21% of n-mers in DMDG and 94% in EggPC. The analysis of fluorescence experiments carried out on the same samples indicated that: (i) the fluorescence process of pyrene probes was generated by the monomers: and (ii) the excimer forming resulted from a diffusional encounter between one excited and one non-excited monomer. A correction of fluorescence data allowing a more correct interpretation of fluorescence measurements was proposed.

http://www.ncbi.nlm.nih.gov/pubmed/11603845