Search anything and hit enter
  • Teams
  • Members
  • Projects
  • Events
  • Calls
  • Jobs
  • publications
  • Software
  • Tools
  • Network
  • Equipment

A little guide for advanced search:

  • Tip 1. You can use quotes "" to search for an exact expression.
    Example: "cell division"
  • Tip 2. You can use + symbol to restrict results containing all words.
    Example: +cell +stem
  • Tip 3. You can use + and - symbols to force inclusion or exclusion of specific words.
    Example: +cell -stem
e.g. searching for members in projects tagged cancer
Search for
Count
IN
OUT
Content 1
  • member
  • team
  • department
  • center
  • program_project
  • nrc
  • whocc
  • project
  • software
  • tool
  • patent
  • Administrative Staff
  • Assistant Professor
  • Associate Professor
  • Clinical Research Assistant
  • Clinical Research Nurse
  • Clinician Researcher
  • Department Manager
  • Dual-education Student
  • Full Professor
  • Honorary Professor
  • Lab assistant
  • Master Student
  • Non-permanent Researcher
  • Nursing Staff
  • Permanent Researcher
  • Pharmacist
  • PhD Student
  • Physician
  • Post-doc
  • Prize
  • Project Manager
  • Research Associate
  • Research Engineer
  • Retired scientist
  • Technician
  • Undergraduate Student
  • Veterinary
  • Visiting Scientist
  • Deputy Director of Center
  • Deputy Director of Department
  • Deputy Director of National Reference Center
  • Deputy Head of Facility
  • Director of Center
  • Director of Department
  • Director of Institute
  • Director of National Reference Center
  • Group Leader
  • Head of Facility
  • Head of Operations
  • Head of Structure
  • Honorary President of the Departement
  • Labex Coordinator
Content 2
  • member
  • team
  • department
  • center
  • program_project
  • nrc
  • whocc
  • project
  • software
  • tool
  • patent
  • Administrative Staff
  • Assistant Professor
  • Associate Professor
  • Clinical Research Assistant
  • Clinical Research Nurse
  • Clinician Researcher
  • Department Manager
  • Dual-education Student
  • Full Professor
  • Honorary Professor
  • Lab assistant
  • Master Student
  • Non-permanent Researcher
  • Nursing Staff
  • Permanent Researcher
  • Pharmacist
  • PhD Student
  • Physician
  • Post-doc
  • Prize
  • Project Manager
  • Research Associate
  • Research Engineer
  • Retired scientist
  • Technician
  • Undergraduate Student
  • Veterinary
  • Visiting Scientist
  • Deputy Director of Center
  • Deputy Director of Department
  • Deputy Director of National Reference Center
  • Deputy Head of Facility
  • Director of Center
  • Director of Department
  • Director of Institute
  • Director of National Reference Center
  • Group Leader
  • Head of Facility
  • Head of Operations
  • Head of Structure
  • Honorary President of the Departement
  • Labex Coordinator
Search
Go back
Scroll to top
Share
© Research
Publication : Proceedings of the National Academy of Sciences of the United States of America

Powerful gene-based testing by integrating long-range chromatin interactions and knockoff genotypes.

Scientific Fields
Diseases
Organisms
Applications
Technique

Published in Proceedings of the National Academy of Sciences of the United States of America - 23 Nov 2021

Ma S, Dalgleish J, Lee J, Wang C, Liu L, Gill R, Buxbaum JD, Chung WK, Aschard H, Silverman EK, Cho MH, He Z, Ionita-Laza I,

Link to Pubmed [PMID] – 34799441

Link to DOI – e210519111810.1073/pnas.2105191118

Proc Natl Acad Sci U S A 2021 11; 118(47):

Gene-based tests are valuable techniques for identifying genetic factors in complex traits. Here, we propose a gene-based testing framework that incorporates data on long-range chromatin interactions, several recent technical advances for region-based tests, and leverages the knockoff framework for synthetic genotype generation for improved gene discovery. Through simulations and applications to genome-wide association studies (GWAS) and whole-genome sequencing data for multiple diseases and traits, we show that the proposed test increases the power over state-of-the-art gene-based tests in the literature, identifies genes that replicate in larger studies, and can provide a more narrow focus on the possible causal genes at a locus by reducing the confounding effect of linkage disequilibrium. Furthermore, our results show that incorporating genetic variation in distal regulatory elements tends to improve power over conventional tests. Results for UK Biobank and BioBank Japan traits are also available in a publicly accessible database that allows researchers to query gene-based results in an easy fashion.