Search anything and hit enter
  • Teams
  • Members
  • Projects
  • Events
  • Calls
  • Jobs
  • publications
  • Software
  • Tools
  • Network
  • Equipment

A little guide for advanced search:

  • Tip 1. You can use quotes "" to search for an exact expression.
    Example: "cell division"
  • Tip 2. You can use + symbol to restrict results containing all words.
    Example: +cell +stem
  • Tip 3. You can use + and - symbols to force inclusion or exclusion of specific words.
    Example: +cell -stem
e.g. searching for members in projects tagged cancer
Search for
Count
IN
OUT
Content 1
  • member
  • team
  • department
  • center
  • program_project
  • nrc
  • whocc
  • project
  • software
  • tool
  • patent
  • Administrative Staff
  • Assistant Professor
  • Associate Professor
  • Clinical Research Assistant
  • Clinical Research Nurse
  • Clinician Researcher
  • Department Manager
  • Dual-education Student
  • Full Professor
  • Honorary Professor
  • Lab assistant
  • Master Student
  • Non-permanent Researcher
  • Nursing Staff
  • Permanent Researcher
  • Pharmacist
  • PhD Student
  • Physician
  • Post-doc
  • Prize
  • Project Manager
  • Research Associate
  • Research Engineer
  • Retired scientist
  • Technician
  • Undergraduate Student
  • Veterinary
  • Visiting Scientist
  • Deputy Director of Center
  • Deputy Director of Department
  • Deputy Director of National Reference Center
  • Deputy Head of Facility
  • Director of Center
  • Director of Department
  • Director of Institute
  • Director of National Reference Center
  • Group Leader
  • Head of Facility
  • Head of Operations
  • Head of Structure
  • Honorary President of the Departement
  • Labex Coordinator
Content 2
  • member
  • team
  • department
  • center
  • program_project
  • nrc
  • whocc
  • project
  • software
  • tool
  • patent
  • Administrative Staff
  • Assistant Professor
  • Associate Professor
  • Clinical Research Assistant
  • Clinical Research Nurse
  • Clinician Researcher
  • Department Manager
  • Dual-education Student
  • Full Professor
  • Honorary Professor
  • Lab assistant
  • Master Student
  • Non-permanent Researcher
  • Nursing Staff
  • Permanent Researcher
  • Pharmacist
  • PhD Student
  • Physician
  • Post-doc
  • Prize
  • Project Manager
  • Research Associate
  • Research Engineer
  • Retired scientist
  • Technician
  • Undergraduate Student
  • Veterinary
  • Visiting Scientist
  • Deputy Director of Center
  • Deputy Director of Department
  • Deputy Director of National Reference Center
  • Deputy Head of Facility
  • Director of Center
  • Director of Department
  • Director of Institute
  • Director of National Reference Center
  • Group Leader
  • Head of Facility
  • Head of Operations
  • Head of Structure
  • Honorary President of the Departement
  • Labex Coordinator
Search
Go back
Scroll to top
Share
© Research
Publication : FEBS letters

Potential role for triglycerides in signal transduction

Scientific Fields
Diseases
Organisms
Applications
Technique

Published in FEBS letters - 28 Jan 2000

Maury E, Guérineau NC, Comminges C, Mollard P, Prévost MC, Chap H

Link to Pubmed [PMID] – 10682833

FEBS Lett. 2000 Jan;466(2-3):228-32

We previously reported that endothelin-1 or platelet-derived growth factor promoted in aortic smooth muscle cells a rapid hydrolysis of 1-O-alkyl-2-acyl-sn-glycero-3-phosphoethanolamine (alkyl-PE) which was immediately converted into 1-O-alkyl-2,3-diacyl-sn-glycerol (alkyl-TG) within 5 s or 60 s respectively [C. Comminges et al. (1996) Biochem. Biophys. Res. Commun. 220, 1008-1013 and C. Comminges et al. (1997) Biochim. Biophys. Acta 1355, 69-80]. In this study, we show that this alkyl-PE hydrolysis is triggered by a transient activation of a specific phospholipase C (PLC) regulated by pertussis toxin-sensitive heterotrimeric G-proteins. Moreover, this PLC can be triggered through a Ca2+ influx depending on L-type Ca2+ channel activation, as suggested by the use of a specific ‘activator’ S(-)-BayK 8644 and of selective inhibitors such as nimodipine. Interestingly, low concentrations (10(-8)-10(-7)M) of alkyl-TG block the opening of L-type Ca2+ channels, whereas identical concentrations of DG do not alter L-type Ca2+ channels. This study thus unravels a hitherto unrecognized signaling pathway generating alkyl-TG as a novel lipid second messenger, potentially acting as a negative feedback regulator of L-type Ca2+ channels.