Search anything and hit enter
  • Teams
  • Members
  • Projects
  • Events
  • Calls
  • Jobs
  • publications
  • Software
  • Tools
  • Network
  • Equipment

A little guide for advanced search:

  • Tip 1. You can use quotes "" to search for an exact expression.
    Example: "cell division"
  • Tip 2. You can use + symbol to restrict results containing all words.
    Example: +cell +stem
  • Tip 3. You can use + and - symbols to force inclusion or exclusion of specific words.
    Example: +cell -stem
e.g. searching for members in projects tagged cancer
Search for
Count
IN
OUT
Content 1
  • member
  • team
  • department
  • center
  • program_project
  • nrc
  • whocc
  • project
  • software
  • tool
  • patent
  • Administrative Staff
  • Assistant Professor
  • Associate Professor
  • Clinical Research Assistant
  • Clinical Research Nurse
  • Clinician Researcher
  • Department Manager
  • Dual-education Student
  • Full Professor
  • Honorary Professor
  • Lab assistant
  • Master Student
  • Non-permanent Researcher
  • Nursing Staff
  • Permanent Researcher
  • Pharmacist
  • PhD Student
  • Physician
  • Post-doc
  • Prize
  • Project Manager
  • Research Associate
  • Research Engineer
  • Retired scientist
  • Technician
  • Undergraduate Student
  • Veterinary
  • Visiting Scientist
  • Deputy Director of Center
  • Deputy Director of Department
  • Deputy Director of National Reference Center
  • Deputy Head of Facility
  • Director of Center
  • Director of Department
  • Director of Institute
  • Director of National Reference Center
  • Group Leader
  • Head of Facility
  • Head of Operations
  • Head of Structure
  • Honorary President of the Departement
  • Labex Coordinator
Content 2
  • member
  • team
  • department
  • center
  • program_project
  • nrc
  • whocc
  • project
  • software
  • tool
  • patent
  • Administrative Staff
  • Assistant Professor
  • Associate Professor
  • Clinical Research Assistant
  • Clinical Research Nurse
  • Clinician Researcher
  • Department Manager
  • Dual-education Student
  • Full Professor
  • Honorary Professor
  • Lab assistant
  • Master Student
  • Non-permanent Researcher
  • Nursing Staff
  • Permanent Researcher
  • Pharmacist
  • PhD Student
  • Physician
  • Post-doc
  • Prize
  • Project Manager
  • Research Associate
  • Research Engineer
  • Retired scientist
  • Technician
  • Undergraduate Student
  • Veterinary
  • Visiting Scientist
  • Deputy Director of Center
  • Deputy Director of Department
  • Deputy Director of National Reference Center
  • Deputy Head of Facility
  • Director of Center
  • Director of Department
  • Director of Institute
  • Director of National Reference Center
  • Group Leader
  • Head of Facility
  • Head of Operations
  • Head of Structure
  • Honorary President of the Departement
  • Labex Coordinator
Search
Go back
Scroll to top
Share
© Research
Publication : Genome medicine

Phylogroup stability contrasts with high within sequence type complex dynamics of Escherichia coli bloodstream infection isolates over a 12-year period.

Scientific Fields
Diseases
Organisms
Applications
Technique

Published in Genome medicine - 05 May 2021

Royer G, Darty MM, Clermont O, Condamine B, Laouenan C, Decousser JW, Vallenet D, Lefort A, de Lastours V, Denamur E, ,

Link to Pubmed [PMID] – 33952335

Link to DOI – 10.1186/s13073-021-00892-0

Genome Med 2021 May; 13(1): 77

Escherichia coli is the leading cause of bloodstream infections, associated with a significant mortality. Recent genomic analyses revealed that few clonal lineages are involved in bloodstream infections and captured the emergence of some of them. However, data on within sequence type (ST) population genetic structure evolution are rare.We compared whole genome sequences of 912 E. coli isolates responsible for bloodstream infections from two multicenter clinical trials that were conducted in the Paris area, France, 12 years apart, in teaching hospitals belonging to the same institution (“Assistance Publique-Hôpitaux de Paris”). We analyzed the strains at different levels of granularity, i.e., the phylogroup, the ST complex (STc), and the within STc clone taking into consideration the evolutionary history, the resistance, and virulence gene content as well as the antigenic diversity of the strains.We found a mix of stability and changes overtime, depending on the level of comparison. Overall, we observed an increase in antibiotic resistance associated to a restricted number of genetic determinants and in strain plasmidic content, whereas phylogroup distribution and virulence gene content remained constant. Focusing on STcs highlighted the pauci-clonality of the populations, with only 11 STcs responsible for more than 73% of the cases, dominated by five STcs (STc73, STc131, STc95, STc69, STc10). However, some STcs underwent dramatic variations, such as the global pandemic STc131, which replaced the previously predominant STc95. Moreover, within STc131, 95 and 69 genomic diversity analysis revealed a highly dynamic pattern, with reshuffling of the population linked to clonal replacement sometimes coupled with independent acquisitions of virulence factors such as the pap gene cluster bearing a papGII allele located on various pathogenicity islands. Additionally, STc10 exhibited huge antigenic diversity evidenced by numerous O:H serotype/fimH allele combinations, whichever the year of isolation.Altogether, these data suggest that the bloodstream niche is occupied by a wide but specific phylogenetic diversity and that highly specialized extra-intestinal clones undergo frequent turnover at the within ST level. Additional worldwide epidemiological studies overtime are needed in different geographical and ecological contexts to assess how generalizable these data are.