Search anything and hit enter
  • Teams
  • Members
  • Projects
  • Events
  • Calls
  • Jobs
  • publications
  • Software
  • Tools
  • Network
  • Equipment

A little guide for advanced search:

  • Tip 1. You can use quotes "" to search for an exact expression.
    Example: "cell division"
  • Tip 2. You can use + symbol to restrict results containing all words.
    Example: +cell +stem
  • Tip 3. You can use + and - symbols to force inclusion or exclusion of specific words.
    Example: +cell -stem
e.g. searching for members in projects tagged cancer
Search for
Count
IN
OUT
Content 1
  • member
  • team
  • department
  • center
  • program_project
  • nrc
  • whocc
  • project
  • software
  • tool
  • patent
  • Administrative Staff
  • Assistant Professor
  • Associate Professor
  • Clinical Research Assistant
  • Department Manager
  • Full Professor
  • Graduate Student
  • Lab assistant
  • Non-permanent Researcher
  • Permanent Researcher
  • Pharmacist
  • PhD Student
  • Physician
  • Post-doc
  • Project Manager
  • Research Associate
  • Research Engineer
  • Retired scientist
  • Technician
  • Undergraduate Student
  • Veterinary
  • Visiting Scientist
  • Deputy Director of Center
  • Deputy Director of Department
  • Deputy Director of National Reference Center
  • Deputy Head of Facility
  • Director of Center
  • Director of Department
  • Director of Institute
  • Director of National Reference Center
  • Group Leader
  • Head of Facility
  • Head of Operations
  • Head of Structure
  • Honorary President of the Departement
  • Labex Coordinator
Content 2
  • member
  • team
  • department
  • center
  • program_project
  • nrc
  • whocc
  • project
  • software
  • tool
  • patent
  • Administrative Staff
  • Assistant Professor
  • Associate Professor
  • Clinical Research Assistant
  • Department Manager
  • Full Professor
  • Graduate Student
  • Lab assistant
  • Non-permanent Researcher
  • Permanent Researcher
  • Pharmacist
  • PhD Student
  • Physician
  • Post-doc
  • Project Manager
  • Research Associate
  • Research Engineer
  • Retired scientist
  • Technician
  • Undergraduate Student
  • Veterinary
  • Visiting Scientist
  • Deputy Director of Center
  • Deputy Director of Department
  • Deputy Director of National Reference Center
  • Deputy Head of Facility
  • Director of Center
  • Director of Department
  • Director of Institute
  • Director of National Reference Center
  • Group Leader
  • Head of Facility
  • Head of Operations
  • Head of Structure
  • Honorary President of the Departement
  • Labex Coordinator
Search
Go back
Scroll to top
Share
© Research
Publication : Molecular and cellular biology

Phenotypic reversions at the W/Kit locus mediated by mitotic recombination in mice

Scientific Fields
Diseases
Organisms
Applications
Technique

Published in Molecular and cellular biology - 01 Nov 1995

De Sepulveda P, Guenet JL, Panthier JJ

Link to Pubmed [PMID] – 7565742

Mol. Cell. Biol. 1995 Nov;15(11):5898-905

The mouse W locus encodes Kit, the receptor tyrosine kinase for stem cell factor (SCF). Kit is required for several developmental processes, including the proliferation and survival of melanoblasts. Because of the nearly complete failure of Wrio/+ melanoblasts to colonize the skin, the costs of Wrio/+ mice are characterized by a majority of white hairs interspersed among pigmented hairs, giving a roan effect. However, 3.6% of Wrio/+ mice exhibit phenotypic reversions, i.e., spots of wild-type color on their coats with an otherwise mutant phenotype. Melanocyte cell lines were derived from each of six independent reversion spots on the skin of (C57BL/6 x DBA/2)F1 Wrio/+ mice. All six melanocyte cell lines exhibited the general characteristics common to normal, nonimmortal mouse melanocytes. Of these, three revertant cell lines had lost the dominant-negative Wrio allele following mitotic recombination between the centromere and the W locus. One of the cell lines remained Wrio/+ but showed (i) stimulation in response to SCF and (ii) increased Kit expression, suggesting that the Wrio mutation can be rescued by increased endogenous expression of the c-kit proto-oncogene. Finally, two cell lines showed no detectable genetic change at the W/Kit locus and failed to respond to SCF stimulation in vitro. These results demonstrate that mitotic recombination can create large patches of wild-type hair on the coats of Wrio/+ mutant mice. This shows that mitotic recombination occurs spontaneously in normal healthy tissue in vivo. Moreover, these experiments confirm that other mechanisms, not associated with loss of heterozygosity, may account for the coat color reversion phenotype.

http://www.ncbi.nlm.nih.gov/pubmed/7565742