Search anything and hit enter
  • Teams
  • Members
  • Projects
  • Events
  • Calls
  • Jobs
  • publications
  • Software
  • Tools
  • Network
  • Equipment

A little guide for advanced search:

  • Tip 1. You can use quotes "" to search for an exact expression.
    Example: "cell division"
  • Tip 2. You can use + symbol to restrict results containing all words.
    Example: +cell +stem
  • Tip 3. You can use + and - symbols to force inclusion or exclusion of specific words.
    Example: +cell -stem
e.g. searching for members in projects tagged cancer
Search for
Count
IN
OUT
Content 1
  • member
  • team
  • department
  • center
  • program_project
  • nrc
  • whocc
  • project
  • software
  • tool
  • patent
  • Administrative Staff
  • Assistant Professor
  • Associate Professor
  • Clinical Research Assistant
  • Clinical Research Nurse
  • Clinician Researcher
  • Department Manager
  • Dual-education Student
  • Full Professor
  • Honorary Professor
  • Lab assistant
  • Master Student
  • Non-permanent Researcher
  • Nursing Staff
  • Permanent Researcher
  • Pharmacist
  • PhD Student
  • Physician
  • Post-doc
  • Prize
  • Project Manager
  • Research Associate
  • Research Engineer
  • Retired scientist
  • Technician
  • Undergraduate Student
  • Veterinary
  • Visiting Scientist
  • Deputy Director of Center
  • Deputy Director of Department
  • Deputy Director of National Reference Center
  • Deputy Head of Facility
  • Director of Center
  • Director of Department
  • Director of Institute
  • Director of National Reference Center
  • Group Leader
  • Head of Facility
  • Head of Operations
  • Head of Structure
  • Honorary President of the Departement
  • Labex Coordinator
Content 2
  • member
  • team
  • department
  • center
  • program_project
  • nrc
  • whocc
  • project
  • software
  • tool
  • patent
  • Administrative Staff
  • Assistant Professor
  • Associate Professor
  • Clinical Research Assistant
  • Clinical Research Nurse
  • Clinician Researcher
  • Department Manager
  • Dual-education Student
  • Full Professor
  • Honorary Professor
  • Lab assistant
  • Master Student
  • Non-permanent Researcher
  • Nursing Staff
  • Permanent Researcher
  • Pharmacist
  • PhD Student
  • Physician
  • Post-doc
  • Prize
  • Project Manager
  • Research Associate
  • Research Engineer
  • Retired scientist
  • Technician
  • Undergraduate Student
  • Veterinary
  • Visiting Scientist
  • Deputy Director of Center
  • Deputy Director of Department
  • Deputy Director of National Reference Center
  • Deputy Head of Facility
  • Director of Center
  • Director of Department
  • Director of Institute
  • Director of National Reference Center
  • Group Leader
  • Head of Facility
  • Head of Operations
  • Head of Structure
  • Honorary President of the Departement
  • Labex Coordinator
Search
Go back
Scroll to top
Share
© Research
Publication : Medical physics

PET/SPECT/Spectral-CT/CBCT imaging in a small-animal radiation therapy platform: A Monte Carlo study-Part II: Biologically guided radiotherapy.

Scientific Fields
Diseases
Organisms
Applications
Technique

Published in Medical physics - 22 Mar 2024

Li X, Wang H, Xu L, Kuang Y

Link to Pubmed [PMID] – 38517359

Link to DOI – 10.1002/mp.17036

Med Phys 2024 Mar; ():

This study addresses the technical gap between clinical radiation therapy (RT) and preclinical small-animal RT, hindering the comprehensive validation of innovative clinical RT approaches in small-animal models of cancer and the translation of preclinical RT studies into clinical practices.The main aim was to explore the feasibility of biologically guided RT implemented within a small-animal radiation therapy (SART) platform, with integrated quad-modal on-board positron emission tomography (PET), single-photon emission computed tomography, photon-counting spectral CT, and cone-beam CT (CBCT) imaging, in a Monte Carlo model as a proof-of-concept.We developed a SART workflow employing quad-modal imaging guidance, integrating multimodal image-guided RT and emission-guided RT (EGRT). The EGRT algorithm was outlined using positron signals from a PET radiotracer, enabling near real-time adjustments to radiation treatment beams for precise targeting in the presence of a 2-mm setup error. Molecular image-guided RT, incorporating a dose escalation/de-escalation scheme, was demonstrated using a simulated phantom with a dose painting plan. The plan involved delivering a low dose to the CBCT-delineated planning target volume (PTV) and a high dose boosted to the highly active biological target volume (hBTV) identified by the 18F-PET image. Additionally, the Bayesian eigentissue decomposition method illustrated the quantitative decomposition of radiotherapy-related parameters, specifically iodine uptake fraction and virtual noncontrast (VNC) electron density, using a simulated phantom with Kidney1 and Liver2 inserts mixed with an iodine contrast agent at electron fractions of 0.01-0.02.EGRT simulations generated over 4,000 beamlet responses in dose slice deliveries and illustrated superior dose coverage and distribution with significantly lower doses delivered to normal tissues, even with a 2-mm setup error introduced, demonstrating the robustness of the novel EGRT scheme compared to conventional image-guided RT. In the dose-painting plan, doubling the dose to the hBTV while maintaining a low dose for the PTV resulted in an organ-at-risk (OAR) dose comparable to the low-dose treatment for the PTV alone. Furthermore, the decomposition of radiotherapy-related parameters in Kidney1 and Liver2 inserts, including iodine uptake fractions and VNC electron densities, exhibited average relative errors of less than 1.0% and 2.5%, respectively.The results demonstrated the successful implementation of biologically guided RT within the proposed quad-model image-guided SART platform, with potential applications in preclinical RT and adaptive RT studies.