Search anything and hit enter
  • Teams
  • Members
  • Projects
  • Events
  • Calls
  • Jobs
  • publications
  • Software
  • Tools
  • Network
  • Equipment

A little guide for advanced search:

  • Tip 1. You can use quotes "" to search for an exact expression.
    Example: "cell division"
  • Tip 2. You can use + symbol to restrict results containing all words.
    Example: +cell +stem
  • Tip 3. You can use + and - symbols to force inclusion or exclusion of specific words.
    Example: +cell -stem
e.g. searching for members in projects tagged cancer
Search for
Count
IN
OUT
Content 1
  • member
  • team
  • department
  • center
  • program_project
  • nrc
  • whocc
  • project
  • software
  • tool
  • patent
  • Administrative Staff
  • Assistant Professor
  • Associate Professor
  • Clinical Research Assistant
  • Clinical Research Nurse
  • Clinician Researcher
  • Department Manager
  • Dual-education Student
  • Full Professor
  • Honorary Professor
  • Lab assistant
  • Master Student
  • Non-permanent Researcher
  • Nursing Staff
  • Permanent Researcher
  • Pharmacist
  • PhD Student
  • Physician
  • Post-doc
  • Prize
  • Project Manager
  • Research Associate
  • Research Engineer
  • Retired scientist
  • Technician
  • Undergraduate Student
  • Veterinary
  • Visiting Scientist
  • Deputy Director of Center
  • Deputy Director of Department
  • Deputy Director of National Reference Center
  • Deputy Head of Facility
  • Director of Center
  • Director of Department
  • Director of Institute
  • Director of National Reference Center
  • Group Leader
  • Head of Facility
  • Head of Operations
  • Head of Structure
  • Honorary President of the Departement
  • Labex Coordinator
Content 2
  • member
  • team
  • department
  • center
  • program_project
  • nrc
  • whocc
  • project
  • software
  • tool
  • patent
  • Administrative Staff
  • Assistant Professor
  • Associate Professor
  • Clinical Research Assistant
  • Clinical Research Nurse
  • Clinician Researcher
  • Department Manager
  • Dual-education Student
  • Full Professor
  • Honorary Professor
  • Lab assistant
  • Master Student
  • Non-permanent Researcher
  • Nursing Staff
  • Permanent Researcher
  • Pharmacist
  • PhD Student
  • Physician
  • Post-doc
  • Prize
  • Project Manager
  • Research Associate
  • Research Engineer
  • Retired scientist
  • Technician
  • Undergraduate Student
  • Veterinary
  • Visiting Scientist
  • Deputy Director of Center
  • Deputy Director of Department
  • Deputy Director of National Reference Center
  • Deputy Head of Facility
  • Director of Center
  • Director of Department
  • Director of Institute
  • Director of National Reference Center
  • Group Leader
  • Head of Facility
  • Head of Operations
  • Head of Structure
  • Honorary President of the Departement
  • Labex Coordinator
Search

← Go to Research

Go back
Scroll to top
Share
© Jack Moreh_stockvault
Publication : Bioinformatics (Oxford, England)

Optimal Transport improves cell-cell similarity inference in single-cell omics data.

Scientific Fields
Diseases
Organisms
Applications
Technique

Published in Bioinformatics (Oxford, England) - 14 Feb 2022

Huizing GJ, Peyré G, Cantini L,

Link to Pubmed [PMID] – 35157031

Link to DOI – btac08410.1093/bioinformatics/btac084

Bioinformatics 2022 Feb; 38(8): 2169-77

High-throughput single-cell molecular profiling is revolutionizing biology and medicine by unveiling the diversity of cell types and states contributing to development and disease. The identification and characterization of cellular heterogeneity is typically achieved through unsupervised clustering, which crucially relies on a similarity metric.We here propose the use of Optimal Transport (OT) as a cell-cell similarity metric for single-cell omics data. OT defines distances to compare high-dimensional data represented as probability distributions. To speed up computations and cope with the high-dimensionality of single-cell data, we consider the entropic regularization of the classical OT distance. We then extensively benchmark OT against state-of-the-art metrics over thirteen independent datasets, including simulated, scRNA-seq, scATAC-seq and single-cell DNA methylation data. First, we test the ability of the metrics to detect the similarity between cells belonging to the same groups (e.g. cell types, cell lines of origin). Then, we apply unsupervised clustering and test the quality of the resulting clusters. OT is found to improve cell-cell similarity inference and cell clustering in all simulated and real scRNA-seq data, as well as in scATAC-seq and single-cell DNA methylation data.All our analyses are reproducible through the OT-scOmics Jupyter notebook available at https://github.com/ComputationalSystemsBiology/OT-scOmics.Supplementary data are available at Bioinformatics online.