Search anything and hit enter
  • Teams
  • Members
  • Projects
  • Events
  • Calls
  • Jobs
  • publications
  • Software
  • Tools
  • Network
  • Equipment

A little guide for advanced search:

  • Tip 1. You can use quotes "" to search for an exact expression.
    Example: "cell division"
  • Tip 2. You can use + symbol to restrict results containing all words.
    Example: +cell +stem
  • Tip 3. You can use + and - symbols to force inclusion or exclusion of specific words.
    Example: +cell -stem
e.g. searching for members in projects tagged cancer
Search for
Count
IN
OUT
Content 1
  • member
  • team
  • department
  • center
  • program_project
  • nrc
  • whocc
  • project
  • software
  • tool
  • patent
  • Administrative Staff
  • Assistant Professor
  • Associate Professor
  • Clinical Research Assistant
  • Clinical Research Nurse
  • Clinician Researcher
  • Department Manager
  • Dual-education Student
  • Full Professor
  • Honorary Professor
  • Lab assistant
  • Master Student
  • Non-permanent Researcher
  • Nursing Staff
  • Permanent Researcher
  • Pharmacist
  • PhD Student
  • Physician
  • Post-doc
  • Prize
  • Project Manager
  • Research Associate
  • Research Engineer
  • Retired scientist
  • Technician
  • Undergraduate Student
  • Veterinary
  • Visiting Scientist
  • Deputy Director of Center
  • Deputy Director of Department
  • Deputy Director of National Reference Center
  • Deputy Head of Facility
  • Director of Center
  • Director of Department
  • Director of Institute
  • Director of National Reference Center
  • Group Leader
  • Head of Facility
  • Head of Operations
  • Head of Structure
  • Honorary President of the Departement
  • Labex Coordinator
Content 2
  • member
  • team
  • department
  • center
  • program_project
  • nrc
  • whocc
  • project
  • software
  • tool
  • patent
  • Administrative Staff
  • Assistant Professor
  • Associate Professor
  • Clinical Research Assistant
  • Clinical Research Nurse
  • Clinician Researcher
  • Department Manager
  • Dual-education Student
  • Full Professor
  • Honorary Professor
  • Lab assistant
  • Master Student
  • Non-permanent Researcher
  • Nursing Staff
  • Permanent Researcher
  • Pharmacist
  • PhD Student
  • Physician
  • Post-doc
  • Prize
  • Project Manager
  • Research Associate
  • Research Engineer
  • Retired scientist
  • Technician
  • Undergraduate Student
  • Veterinary
  • Visiting Scientist
  • Deputy Director of Center
  • Deputy Director of Department
  • Deputy Director of National Reference Center
  • Deputy Head of Facility
  • Director of Center
  • Director of Department
  • Director of Institute
  • Director of National Reference Center
  • Group Leader
  • Head of Facility
  • Head of Operations
  • Head of Structure
  • Honorary President of the Departement
  • Labex Coordinator
Search
Go back
Scroll to top
Share
© Research
Publication : Cell stem cell

Notch-Induced miR-708 Antagonizes Satellite Cell Migration and Maintains Quiescence.

Scientific Fields
Diseases
Organisms
Applications
Technique

Published in Cell stem cell - 01 Sep 2018

Baghdadi MB, Firmino J, Soni K, Evano B, Di Girolamo D, Mourikis P, Castel D, Tajbakhsh S,

Link to Pubmed [PMID] – 30416072

Link to DOI – S1934-5909(18)30481-810.1016/j.stem.2018.09.017

Cell Stem Cell 2018 12; 23(6): 859-868.e5

Critical features of stem cells include anchoring within a niche and activation upon injury. Notch signaling maintains skeletal muscle satellite (stem) cell quiescence by inhibiting differentiation and inducing expression of extracellular components of the niche. However, the complete spectrum of how Notch safeguards quiescence is not well understood. Here, we perform Notch ChIP-sequencing and small RNA sequencing in satellite cells and identify the Notch-induced microRNA-708, which is a mirtron that is highly expressed in quiescent cells and sharply downregulated in activated cells. We employ in vivo and ex vivo functional studies, in addition to live imaging, to show that miR-708 regulates quiescence and self-renewal by antagonizing cell migration through targeting the transcripts of the focal-adhesion-associated protein Tensin3. Therefore, this study identifies a Notch-miR708-Tensin3 axis and suggests that Notch signaling can regulate satellite cell quiescence and transition to the activation state through dynamic regulation of the migratory machinery.