Search anything and hit enter
  • Teams
  • Members
  • Projects
  • Events
  • Calls
  • Jobs
  • publications
  • Software
  • Tools
  • Network
  • Equipment

A little guide for advanced search:

  • Tip 1. You can use quotes "" to search for an exact expression.
    Example: "cell division"
  • Tip 2. You can use + symbol to restrict results containing all words.
    Example: +cell +stem
  • Tip 3. You can use + and - symbols to force inclusion or exclusion of specific words.
    Example: +cell -stem
e.g. searching for members in projects tagged cancer
Search for
Count
IN
OUT
Content 1
  • member
  • team
  • department
  • center
  • program_project
  • nrc
  • whocc
  • project
  • software
  • tool
  • patent
  • Administrative Staff
  • Assistant Professor
  • Associate Professor
  • Clinical Research Assistant
  • Clinical Research Nurse
  • Clinician Researcher
  • Department Manager
  • Dual-education Student
  • Full Professor
  • Honorary Professor
  • Lab assistant
  • Master Student
  • Non-permanent Researcher
  • Nursing Staff
  • Permanent Researcher
  • Pharmacist
  • PhD Student
  • Physician
  • Post-doc
  • Prize
  • Project Manager
  • Research Associate
  • Research Engineer
  • Retired scientist
  • Technician
  • Undergraduate Student
  • Veterinary
  • Visiting Scientist
  • Deputy Director of Center
  • Deputy Director of Department
  • Deputy Director of National Reference Center
  • Deputy Head of Facility
  • Director of Center
  • Director of Department
  • Director of Institute
  • Director of National Reference Center
  • Group Leader
  • Head of Facility
  • Head of Operations
  • Head of Structure
  • Honorary President of the Departement
  • Labex Coordinator
Content 2
  • member
  • team
  • department
  • center
  • program_project
  • nrc
  • whocc
  • project
  • software
  • tool
  • patent
  • Administrative Staff
  • Assistant Professor
  • Associate Professor
  • Clinical Research Assistant
  • Clinical Research Nurse
  • Clinician Researcher
  • Department Manager
  • Dual-education Student
  • Full Professor
  • Honorary Professor
  • Lab assistant
  • Master Student
  • Non-permanent Researcher
  • Nursing Staff
  • Permanent Researcher
  • Pharmacist
  • PhD Student
  • Physician
  • Post-doc
  • Prize
  • Project Manager
  • Research Associate
  • Research Engineer
  • Retired scientist
  • Technician
  • Undergraduate Student
  • Veterinary
  • Visiting Scientist
  • Deputy Director of Center
  • Deputy Director of Department
  • Deputy Director of National Reference Center
  • Deputy Head of Facility
  • Director of Center
  • Director of Department
  • Director of Institute
  • Director of National Reference Center
  • Group Leader
  • Head of Facility
  • Head of Operations
  • Head of Structure
  • Honorary President of the Departement
  • Labex Coordinator
Search

← Go to Research

Go back
Scroll to top
Share
© Research
Publication : Journal of bacteriology

Nonpolar mutagenesis of the ipa genes defines IpaB, IpaC, and IpaD as effectors of Shigella flexneri entry into epithelial cells

Scientific Fields
Diseases
Organisms
Applications
Technique

Published in Journal of bacteriology - 01 Sep 1993

Ménard R, Sansonetti PJ, Parsot C

Link to Pubmed [PMID] – 8376337

J. Bacteriol. 1993 Sep;175(18):5899-906

A 31-kb fragment of the large virulence plasmid of Shigella flexneri is necessary for bacterial entry into epithelial cells in vitro. One locus of this fragment encodes the IpaA, -B, -C, and -D proteins, which are the dominant antigens of the humoral immune response during shigellosis. To address the role of the ipa genes, which are clustered in an operon, we constructed a selectable cassette that does not affect transcription of downstream genes and used this cassette to inactivate the ipaB, ipaC, and ipaD genes. Each of these nonpolar mutants was defective in entry and lysis of the phagocytic vacuole but was not impaired in adhesion to the cells. We showed that, like IpaB and IpaC, IpaD is secreted into the culture supernatant and that none of these proteins is necessary for secretion of the other two. This result differentiates the Ipa proteins, which direct the entry process, from the Mxi and Spa proteins, which direct secretion of the Ipa proteins. Moreover, lack of either IpaB or IpaD resulted in the release of larger amounts of the other Ipa polypeptides into the culture medium, which indicates that, in addition to their role in invasion, IpaB and IpaD are each involved in the maintenance of the association of the Ipa proteins with the bacterium.