Search anything and hit enter
  • Teams
  • Members
  • Projects
  • Events
  • Calls
  • Jobs
  • publications
  • Software
  • Tools
  • Network
  • Equipment

A little guide for advanced search:

  • Tip 1. You can use quotes "" to search for an exact expression.
    Example: "cell division"
  • Tip 2. You can use + symbol to restrict results containing all words.
    Example: +cell +stem
  • Tip 3. You can use + and - symbols to force inclusion or exclusion of specific words.
    Example: +cell -stem
e.g. searching for members in projects tagged cancer
Search for
Count
IN
OUT
Content 1
  • member
  • team
  • department
  • center
  • program_project
  • nrc
  • whocc
  • project
  • software
  • tool
  • patent
  • Administrative Staff
  • Assistant Professor
  • Associate Professor
  • Clinical Research Assistant
  • Full Professor
  • Graduate Student
  • Lab assistant
  • Non-permanent Researcher
  • Permanent Researcher
  • Pharmacist
  • PhD Student
  • Physician
  • Post-doc
  • Project Manager
  • Research Associate
  • Research Engineer
  • Retired scientist
  • Technician
  • Undergraduate Student
  • Veterinary
  • Visiting Scientist
  • Deputy Director of Center
  • Deputy Director of Department
  • Deputy Director of National Reference Center
  • Deputy Head of Facility
  • Director of Center
  • Director of Department
  • Director of Institute
  • Director of National Reference Center
  • Group Leader
  • Head of Facility
  • Head of Operations
  • Head of Structure
  • Honorary President of the Departement
  • Labex Coordinator
Content 2
  • member
  • team
  • department
  • center
  • program_project
  • nrc
  • whocc
  • project
  • software
  • tool
  • patent
  • Administrative Staff
  • Assistant Professor
  • Associate Professor
  • Clinical Research Assistant
  • Full Professor
  • Graduate Student
  • Lab assistant
  • Non-permanent Researcher
  • Permanent Researcher
  • Pharmacist
  • PhD Student
  • Physician
  • Post-doc
  • Project Manager
  • Research Associate
  • Research Engineer
  • Retired scientist
  • Technician
  • Undergraduate Student
  • Veterinary
  • Visiting Scientist
  • Deputy Director of Center
  • Deputy Director of Department
  • Deputy Director of National Reference Center
  • Deputy Head of Facility
  • Director of Center
  • Director of Department
  • Director of Institute
  • Director of National Reference Center
  • Group Leader
  • Head of Facility
  • Head of Operations
  • Head of Structure
  • Honorary President of the Departement
  • Labex Coordinator
Search
Go back
Scroll to top
Share
© Fabrice Chrétien with Ultrapole, colorized by Jean-Marc Panaud
Cellule souche (en jaune) de muscle squelettique partiellement recouverte par la membrane basale, migrant sur une fibre musculaire (en bleu).
Publication : Neurotoxicology and teratology

Neonatal choline supplementation ameliorates the effects of prenatal alcohol exposure on a discrimination learning task in rats

Scientific Fields
Diseases
Organisms
Applications
Technique

Published in Neurotoxicology and teratology - 01 Sep 2000

Thomas JD, La Fiette MH, Quinn VR, Riley EP

Link to Pubmed [PMID] – 11106863

Neurotoxicol Teratol 2000 Sep-Oct;22(5):703-11

Prenatal alcohol exposure can disrupt brain development and lead to a myriad of behavioral alterations, including motor coordination deficits, hyperactivity, and learning deficits. There remains a need, however, to identify treatments and interventions for reducing the severity of alcohol-related neurodevelopmental disorders. Some of the alcohol-induced deficits in learning may be related to alterations in cholinergic functioning. Interestingly, there is a growing literature demonstrating that pre- and/or early postnatal choline supplementation can lead to long-term enhancement in learning and memory and cholinergic activity in rats. The present study examined whether such early choline supplementation might counter the effects of prenatal alcohol treatment on a visuospatial discrimination task. Pregnant Sprague-Dawley rats were randomly assigned to one of three prenatal treatment groups. One group received a liquid diet containing 35% ethanol-derived calories (EDC) from gestational day (GD) 6-20. A second group served as a pair-fed (PF) control group and the third group served as an ad lib lab chow (LC) control. On postnatal day (PD) 2, pups were assigned within-litter to one of three postnatal treatments: choline, saline vehicle, or no treatment. Choline and vehicle pups were intubated with a choline chloride solution or vehicle daily from PD 2 to 21, whereas the non-treated pups were handled daily but not intubated. On PD 45, subjects were tested on a visuospatial discrimination task. Ethanol-exposed subjects who were not treated neonatally with choline committed a significantly greater number of errors both during acquisition and during delayed discrimination training compared to both PF and LC controls. Neonatal choline treatment significantly improved performance on the discrimination task in all groups; however, the beneficial effects of choline were significantly larger in ethanol-exposed subjects. Indeed, the performance of ethanol-exposed pups treated with neonatal choline did not differ from any of the PF or LC groups on any measure. Thus, early postnatal choline supplementation significantly attenuated the effects of prenatal alcohol on this learning task. Importantly, these effects were not due to the acute effects of choline, but rather to long-term changes in brain and behavioral development. These data suggest that early dietary interventions may reduce the severity of fetal alcohol effects.

http://www.ncbi.nlm.nih.gov/pubmed/11106863