Search anything and hit enter
  • Teams
  • Members
  • Projects
  • Events
  • Calls
  • Jobs
  • publications
  • Software
  • Tools
  • Network
  • Equipment

A little guide for advanced search:

  • Tip 1. You can use quotes "" to search for an exact expression.
    Example: "cell division"
  • Tip 2. You can use + symbol to restrict results containing all words.
    Example: +cell +stem
  • Tip 3. You can use + and - symbols to force inclusion or exclusion of specific words.
    Example: +cell -stem
e.g. searching for members in projects tagged cancer
Search for
Count
IN
OUT
Content 1
  • member
  • team
  • department
  • center
  • program_project
  • nrc
  • whocc
  • project
  • software
  • tool
  • patent
  • Administrative Staff
  • Assistant Professor
  • Associate Professor
  • Clinical Research Assistant
  • Full Professor
  • Graduate Student
  • Lab assistant
  • Non-permanent Researcher
  • Permanent Researcher
  • Pharmacist
  • PhD Student
  • Physician
  • Post-doc
  • Project Manager
  • Research Associate
  • Research Engineer
  • Retired scientist
  • Technician
  • Undergraduate Student
  • Veterinary
  • Visiting Scientist
  • Deputy Director of Center
  • Deputy Director of Department
  • Deputy Director of National Reference Center
  • Deputy Head of Facility
  • Director of Center
  • Director of Department
  • Director of Institute
  • Director of National Reference Center
  • Group Leader
  • Head of Facility
  • Head of Operations
  • Head of Structure
  • Honorary President of the Departement
  • Labex Coordinator
Content 2
  • member
  • team
  • department
  • center
  • program_project
  • nrc
  • whocc
  • project
  • software
  • tool
  • patent
  • Administrative Staff
  • Assistant Professor
  • Associate Professor
  • Clinical Research Assistant
  • Full Professor
  • Graduate Student
  • Lab assistant
  • Non-permanent Researcher
  • Permanent Researcher
  • Pharmacist
  • PhD Student
  • Physician
  • Post-doc
  • Project Manager
  • Research Associate
  • Research Engineer
  • Retired scientist
  • Technician
  • Undergraduate Student
  • Veterinary
  • Visiting Scientist
  • Deputy Director of Center
  • Deputy Director of Department
  • Deputy Director of National Reference Center
  • Deputy Head of Facility
  • Director of Center
  • Director of Department
  • Director of Institute
  • Director of National Reference Center
  • Group Leader
  • Head of Facility
  • Head of Operations
  • Head of Structure
  • Honorary President of the Departement
  • Labex Coordinator
Search
Go back
Scroll to top
Share
© Research
Publication : Journal of cell science

Nedd4.1-mediated ubiquitination and subsequent recruitment of Tsg101 ensure HTLV-1 Gag trafficking towards the multivesicular body pathway prior to virus budding

Scientific Fields
Diseases
Organisms
Applications
Technique

Published in Journal of cell science - 01 May 2004

Blot V, Perugi F, Gay B, Prévost MC, Briant L, Tangy F, Abriel H, Staub O, Dokhélar MC, Pique C

Link to Pubmed [PMID] – 15126635

J. Cell. Sci. 2004 May;117(Pt 11):2357-67

One of the most exciting recent developments in the field of retroviruses is the finding that their Gag proteins hijack cellular proteins from the mutivesicular body (MVB) pathway during the budding process. The Gag proteins of oncoretroviruses possess a PPxY motif that recruits a ubiquitin ligase from the Nedd4 family, whereas those of the human immunodeficiency virus interact through a PTAP motif with Tsg101, a protein of the ESCRT-1 complex. It is currently assumed that Nedd4 and Tsg101 represent equivalent entry gates towards the same cellular process leading to budding, and that both partners are recruited to the plasma membrane where viral budding occurs. However, we report here that the budding of the human oncoretrovirus HTLV-1, the Gag proteins of which possess tandem PPPY/PTAP motifs, requires both Nedd4 and Tsg101. We show that Nedd4.1, but not Nedd4.2, is recruited by the PPPY motif of Gag and subsequently catalyzes Gag ubiquitination. We also demonstrate that Gag interacts first with Nedd4.1 at the plasma membrane and then with Tsg101 in late endosomes/MVBs. Consistently, we found that HTLV-1 particles mutated in the PPPY motif remain underneath the plasma membrane, blocked at an early step of the budding process, whereas PTAP-mutated viruses accumulate in intracellular vesicles, blocked at a later step. Our findings indicate that Nedd4.1 and Tsg101 act successively in the assembly process of HTLV-1 to ensure proper Gag trafficking through the endocytic pathway up to late endosomes where the late steps of retroviral release occur.

http://www.ncbi.nlm.nih.gov/pubmed/15126635