Search anything and hit enter
  • Teams
  • Members
  • Projects
  • Events
  • Calls
  • Jobs
  • publications
  • Software
  • Tools
  • Network
  • Equipment

A little guide for advanced search:

  • Tip 1. You can use quotes "" to search for an exact expression.
    Example: "cell division"
  • Tip 2. You can use + symbol to restrict results containing all words.
    Example: +cell +stem
  • Tip 3. You can use + and - symbols to force inclusion or exclusion of specific words.
    Example: +cell -stem
e.g. searching for members in projects tagged cancer
Search for
Count
IN
OUT
Content 1
  • member
  • team
  • department
  • center
  • program_project
  • nrc
  • whocc
  • project
  • software
  • tool
  • patent
  • Administrative Staff
  • Assistant Professor
  • Associate Professor
  • Clinical Research Assistant
  • Full Professor
  • Graduate Student
  • Lab assistant
  • Non-permanent Researcher
  • Permanent Researcher
  • Pharmacist
  • PhD Student
  • Physician
  • Post-doc
  • Project Manager
  • Research Associate
  • Research Engineer
  • Retired scientist
  • Technician
  • Undergraduate Student
  • Veterinary
  • Visiting Scientist
  • Deputy Director of Center
  • Deputy Director of Department
  • Deputy Director of National Reference Center
  • Deputy Head of Facility
  • Director of Center
  • Director of Department
  • Director of Institute
  • Director of National Reference Center
  • Group Leader
  • Head of Facility
  • Head of Operations
  • Head of Structure
  • Honorary President of the Departement
  • Labex Coordinator
Content 2
  • member
  • team
  • department
  • center
  • program_project
  • nrc
  • whocc
  • project
  • software
  • tool
  • patent
  • Administrative Staff
  • Assistant Professor
  • Associate Professor
  • Clinical Research Assistant
  • Full Professor
  • Graduate Student
  • Lab assistant
  • Non-permanent Researcher
  • Permanent Researcher
  • Pharmacist
  • PhD Student
  • Physician
  • Post-doc
  • Project Manager
  • Research Associate
  • Research Engineer
  • Retired scientist
  • Technician
  • Undergraduate Student
  • Veterinary
  • Visiting Scientist
  • Deputy Director of Center
  • Deputy Director of Department
  • Deputy Director of National Reference Center
  • Deputy Head of Facility
  • Director of Center
  • Director of Department
  • Director of Institute
  • Director of National Reference Center
  • Group Leader
  • Head of Facility
  • Head of Operations
  • Head of Structure
  • Honorary President of the Departement
  • Labex Coordinator
Search
Go back
Scroll to top
Share
© Research
Publication : The Journal of biological chemistry

Mycobacterium tuberculosis Rv1395 is a class III transcriptional regulator of the AraC family involved in cytochrome P450 regulation

Scientific Fields
Diseases
Organisms
Applications
Technique

Published in The Journal of biological chemistry - 25 Jun 2003

Recchi C, Sclavi B, Rauzier J, Gicquel B, Reyrat JM

Link to Pubmed [PMID] – 12826660

J. Biol. Chem. 2003 Sep;278(36):33763-73

Rv1395 is annotated as a potential transcriptional regulator of the AraC family. The Rv1395 insertional mutant was identified in a signature tag mutagenesis study in Mycobacterium tuberculosis and was shown to be attenuated in the lungs of mice. Here, we used comparative genomics and biochemical methods to show that Rv1395 is unique to the M. tuberculosis complex and that it encodes a protein that binds the region between two divergent genes, a member of the cytochrome P450 family (Rv1394c or cyp132) and Rv1395 itself. Rv1395 binds to this DNA region by its helix-turn-helix-containing C-terminal domain, and it recognizes two sites with different affinity. We identified the transcriptional start points (TSP) of Rv1394c and Rv1395: both genes have two TSPs, three of which are located in the intergenic region. We constructed and compared various transcriptional fusions consisting of the promoter regions and a reporter gene in Mycobacterium smegmatis: this showed that Rv1395 induces the expression of the cytochrome P450 gene (Rv1394c) and represses its own transcription. This was confirmed in M. tuberculosis when the wild type and a Rv1395-overexpressing strain were used as hosts for the fusions. Site-directed mutagenesis showed that Rv1395 binds to the two sites in a co-operative manner and that binding to both sites is required for Rv1395 optimal activity. A model describing the potential mode of action of Rv1395 is discussed.

http://www.ncbi.nlm.nih.gov/pubmed/12826660