Search anything and hit enter
  • Teams
  • Members
  • Projects
  • Events
  • Calls
  • Jobs
  • publications
  • Software
  • Tools
  • Network
  • Equipment

A little guide for advanced search:

  • Tip 1. You can use quotes "" to search for an exact expression.
    Example: "cell division"
  • Tip 2. You can use + symbol to restrict results containing all words.
    Example: +cell +stem
  • Tip 3. You can use + and - symbols to force inclusion or exclusion of specific words.
    Example: +cell -stem
e.g. searching for members in projects tagged cancer
Search for
Count
IN
OUT
Content 1
  • member
  • team
  • department
  • center
  • program_project
  • nrc
  • whocc
  • project
  • software
  • tool
  • patent
  • Administrative Staff
  • Assistant Professor
  • Associate Professor
  • Clinical Research Assistant
  • Full Professor
  • Graduate Student
  • Lab assistant
  • Non-permanent Researcher
  • Permanent Researcher
  • Pharmacist
  • PhD Student
  • Physician
  • Post-doc
  • Project Manager
  • Research Associate
  • Research Engineer
  • Retired scientist
  • Technician
  • Undergraduate Student
  • Veterinary
  • Visiting Scientist
  • Deputy Director of Center
  • Deputy Director of Department
  • Deputy Director of National Reference Center
  • Deputy Head of Facility
  • Director of Center
  • Director of Department
  • Director of Institute
  • Director of National Reference Center
  • Group Leader
  • Head of Facility
  • Head of Operations
  • Head of Structure
  • Honorary President of the Departement
  • Labex Coordinator
Content 2
  • member
  • team
  • department
  • center
  • program_project
  • nrc
  • whocc
  • project
  • software
  • tool
  • patent
  • Administrative Staff
  • Assistant Professor
  • Associate Professor
  • Clinical Research Assistant
  • Full Professor
  • Graduate Student
  • Lab assistant
  • Non-permanent Researcher
  • Permanent Researcher
  • Pharmacist
  • PhD Student
  • Physician
  • Post-doc
  • Project Manager
  • Research Associate
  • Research Engineer
  • Retired scientist
  • Technician
  • Undergraduate Student
  • Veterinary
  • Visiting Scientist
  • Deputy Director of Center
  • Deputy Director of Department
  • Deputy Director of National Reference Center
  • Deputy Head of Facility
  • Director of Center
  • Director of Department
  • Director of Institute
  • Director of National Reference Center
  • Group Leader
  • Head of Facility
  • Head of Operations
  • Head of Structure
  • Honorary President of the Departement
  • Labex Coordinator
Search
Go back
Scroll to top
Share
© Research
Publication : Journal of immunological methods

Multiparameter precursor analysis of T-cell responses to antigen

Scientific Fields
Diseases
Organisms
Applications
Technique

Published in Journal of immunological methods - 01 May 2003

Bercovici N, Givan AL, Waugh MG, Fisher JL, Vernel-Pauillac F, Ernstoff MS, Abastado JP, Wallace PK

Link to Pubmed [PMID] – 12738355

J. Immunol. Methods 2003 May;276(1-2):5-17

Triggering of the T-cell receptor by cognate antigen induces a variety of cellular events leading to cell proliferation and differentiation. While the plasticity and diversity of T-cell responses have been recognized for a long time, few quantitative studies have been conducted to measure what proportion of specific T cells will enter a given differentiation program after antigen stimulation. In the present study, we analyzed human T cells cultured with influenza-peptide-loaded dendritic cells. We compared three individual methods for assaying the frequency of antigen-specific T cells: ELISPOT, tetramer-binding, and proliferation. The three methods yielded similar but not identical results. In order to study these differences at the single cell level, we developed a multiparameter flow cytometric method, which allows simultaneous analysis of antigen-specific tetramer binding, T-cell proliferation, and cytokine production. Based on these data, we used flow precursor frequency analysis to calculate the proportion of eight different precursor subsets in the original, resting population. We conclude that approximately half of the cells that bound specific tetramers actually proliferated and synthesized IFNgamma in response to antigen. In addition, similar numbers of cells that did not bind tetramer proliferated (but did not synthesize IFNgamma). The method allows for an estimate of the precursor frequency of each functional subset within the initial population. It could be applied to additional markers of function and differentiation, combining all parameters into a description of the complex response potential of a T-cell pool.

http://www.ncbi.nlm.nih.gov/pubmed/12738355