Search anything and hit enter
  • Teams
  • Members
  • Projects
  • Events
  • Calls
  • Jobs
  • publications
  • Software
  • Tools
  • Network
  • Equipment

A little guide for advanced search:

  • Tip 1. You can use quotes "" to search for an exact expression.
    Example: "cell division"
  • Tip 2. You can use + symbol to restrict results containing all words.
    Example: +cell +stem
  • Tip 3. You can use + and - symbols to force inclusion or exclusion of specific words.
    Example: +cell -stem
e.g. searching for members in projects tagged cancer
Search for
Count
IN
OUT
Content 1
  • member
  • team
  • department
  • center
  • program_project
  • nrc
  • whocc
  • project
  • software
  • tool
  • patent
  • Administrative Staff
  • Assistant Professor
  • Associate Professor
  • Clinical Research Assistant
  • Clinical Research Nurse
  • Clinician Researcher
  • Department Manager
  • Dual-education Student
  • Full Professor
  • Honorary Professor
  • Lab assistant
  • Master Student
  • Non-permanent Researcher
  • Nursing Staff
  • Permanent Researcher
  • Pharmacist
  • PhD Student
  • Physician
  • Post-doc
  • Prize
  • Project Manager
  • Research Associate
  • Research Engineer
  • Retired scientist
  • Technician
  • Undergraduate Student
  • Veterinary
  • Visiting Scientist
  • Deputy Director of Center
  • Deputy Director of Department
  • Deputy Director of National Reference Center
  • Deputy Head of Facility
  • Director of Center
  • Director of Department
  • Director of Institute
  • Director of National Reference Center
  • Group Leader
  • Head of Facility
  • Head of Operations
  • Head of Structure
  • Honorary President of the Departement
  • Labex Coordinator
Content 2
  • member
  • team
  • department
  • center
  • program_project
  • nrc
  • whocc
  • project
  • software
  • tool
  • patent
  • Administrative Staff
  • Assistant Professor
  • Associate Professor
  • Clinical Research Assistant
  • Clinical Research Nurse
  • Clinician Researcher
  • Department Manager
  • Dual-education Student
  • Full Professor
  • Honorary Professor
  • Lab assistant
  • Master Student
  • Non-permanent Researcher
  • Nursing Staff
  • Permanent Researcher
  • Pharmacist
  • PhD Student
  • Physician
  • Post-doc
  • Prize
  • Project Manager
  • Research Associate
  • Research Engineer
  • Retired scientist
  • Technician
  • Undergraduate Student
  • Veterinary
  • Visiting Scientist
  • Deputy Director of Center
  • Deputy Director of Department
  • Deputy Director of National Reference Center
  • Deputy Head of Facility
  • Director of Center
  • Director of Department
  • Director of Institute
  • Director of National Reference Center
  • Group Leader
  • Head of Facility
  • Head of Operations
  • Head of Structure
  • Honorary President of the Departement
  • Labex Coordinator
Search
Go back
Scroll to top
Share
© Research
Publication : Proceedings. Biological sciences

Mosquito-borne transmission in urban landscapes: the missing link between vector abundance and human density

Scientific Fields
Diseases
Organisms
Applications
Technique

Published in Proceedings. Biological sciences - 15 Aug 2018

Romeo-Aznar V, Paul R, Telle O, Pascual M

Link to Pubmed [PMID] – 30111594

Proc. Biol. Sci. 2018 Aug;285(1884)

With escalating urbanization, the environmental, demographic, and socio-economic heterogeneity of urban landscapes poses a challenge to mathematical models for the transmission of vector-borne infections. Classical coupled vector-human models typically assume that mosquito abundance is either independent from, or proportional to, human population density, implying a decreasing force of infection, or infection rate with host number. We question these assumptions by introducing an explicit dependence between host and vector densities through different recruitment functions, whose dynamical consequences we examine in a modified model formulation. Contrasting patterns in the force of infection are demonstrated, including in particular increasing trends when recruitment grows sufficiently fast with human density. Interaction of these patterns with seasonality in temperature can give rise to pronounced differences in timing, relative peak sizes, and duration of epidemics. These proposed dependencies explain empirical dengue risk patterns observed in the city of Delhi where socio-economic status has an impact on both human and mosquito densities. These observed risk trends with host density are inconsistent with current standard models. A better understanding of the connection between vector recruitment and host density is needed to address the population dynamics of mosquito-transmitted infections in urban landscapes.