Search anything and hit enter
  • Teams
  • Members
  • Projects
  • Events
  • Calls
  • Jobs
  • publications
  • Software
  • Tools
  • Network
  • Equipment

A little guide for advanced search:

  • Tip 1. You can use quotes "" to search for an exact expression.
    Example: "cell division"
  • Tip 2. You can use + symbol to restrict results containing all words.
    Example: +cell +stem
  • Tip 3. You can use + and - symbols to force inclusion or exclusion of specific words.
    Example: +cell -stem
e.g. searching for members in projects tagged cancer
Search for
Count
IN
OUT
Content 1
  • member
  • team
  • department
  • center
  • program_project
  • nrc
  • whocc
  • project
  • software
  • tool
  • patent
  • Administrative Staff
  • Assistant Professor
  • Associate Professor
  • Clinical Research Assistant
  • Clinical Research Nurse
  • Clinician Researcher
  • Department Manager
  • Dual-education Student
  • Full Professor
  • Honorary Professor
  • Lab assistant
  • Master Student
  • Non-permanent Researcher
  • Nursing Staff
  • Permanent Researcher
  • Pharmacist
  • PhD Student
  • Physician
  • Post-doc
  • Prize
  • Project Manager
  • Research Associate
  • Research Engineer
  • Retired scientist
  • Technician
  • Undergraduate Student
  • Veterinary
  • Visiting Scientist
  • Deputy Director of Center
  • Deputy Director of Department
  • Deputy Director of National Reference Center
  • Deputy Head of Facility
  • Director of Center
  • Director of Department
  • Director of Institute
  • Director of National Reference Center
  • Group Leader
  • Head of Facility
  • Head of Operations
  • Head of Structure
  • Honorary President of the Departement
  • Labex Coordinator
Content 2
  • member
  • team
  • department
  • center
  • program_project
  • nrc
  • whocc
  • project
  • software
  • tool
  • patent
  • Administrative Staff
  • Assistant Professor
  • Associate Professor
  • Clinical Research Assistant
  • Clinical Research Nurse
  • Clinician Researcher
  • Department Manager
  • Dual-education Student
  • Full Professor
  • Honorary Professor
  • Lab assistant
  • Master Student
  • Non-permanent Researcher
  • Nursing Staff
  • Permanent Researcher
  • Pharmacist
  • PhD Student
  • Physician
  • Post-doc
  • Prize
  • Project Manager
  • Research Associate
  • Research Engineer
  • Retired scientist
  • Technician
  • Undergraduate Student
  • Veterinary
  • Visiting Scientist
  • Deputy Director of Center
  • Deputy Director of Department
  • Deputy Director of National Reference Center
  • Deputy Head of Facility
  • Director of Center
  • Director of Department
  • Director of Institute
  • Director of National Reference Center
  • Group Leader
  • Head of Facility
  • Head of Operations
  • Head of Structure
  • Honorary President of the Departement
  • Labex Coordinator
Search

← Go to Research

Go back
Scroll to top
Share
© Research
Publication : Analytical chemistry

Monitoring a reaction at submillisecond resolution in picoliter volumes

Scientific Fields
Diseases
Organisms
Applications
Technique

Published in Analytical chemistry - 18 Jan 2011

Huebner AM, Abell C, Huck WT, Baroud CN, Hollfelder F

Link to Pubmed [PMID] – 21244017

Anal. Chem. 2011 Feb;83(4):1462-8

Well-established rapid mixing techniques such as stopped-flow have been used to push the dead time for kinetic experiments down to a few milliseconds. However, very fast reactions are difficult to resolve below this limit. We now outline an approach that provides access to ultrafast kinetics but does not rely on active mixing at all. Here, the reagents are compartmentalized into water-in-oil emulsion microdroplets (diameter ∼50 μm) that are statically arrayed in pairs, resting side-by-side in a well feature of a poly(dimethylsiloxane) (PDMS) device. A reaction between the contents of two droplets arrayed in such a holding trap is initiated by droplet fusion that is brought about by electrocoalescence and known to occur on a time scale of about 100 μs. A reaction between the reactants (Fe(3+) and SCN(-)) is monitored by image analysis measuring the product formation in the newly merged drop in both space and time, by use of a fast camera. A comparison of the concentration field of the reaction product with the output of a reaction-diffusion system of equations yields a rate constant k ∼ 3 × 10(4) M(-3)·s(-1). Since reaction and diffusion are formally included in the mathematical model, measurements can proceed immediately after the drop fusion, removing the need to allow time for mixing. This approach is different from existing methodologies, for example, experiments in a conventional stopped-flow apparatus but also electrofusion of moving droplets where contents are mixed by chaotic advection before a reaction is monitored. Our analysis makes kinetics accessible that are several times faster than techniques that have to allow time for mixing.