Search anything and hit enter
  • Teams
  • Members
  • Projects
  • Events
  • Calls
  • Jobs
  • publications
  • Software
  • Tools
  • Network
  • Equipment

A little guide for advanced search:

  • Tip 1. You can use quotes "" to search for an exact expression.
    Example: "cell division"
  • Tip 2. You can use + symbol to restrict results containing all words.
    Example: +cell +stem
  • Tip 3. You can use + and - symbols to force inclusion or exclusion of specific words.
    Example: +cell -stem
e.g. searching for members in projects tagged cancer
Search for
Count
IN
OUT
Content 1
  • member
  • team
  • department
  • center
  • program_project
  • nrc
  • whocc
  • project
  • software
  • tool
  • patent
  • Administrative Staff
  • Assistant Professor
  • Associate Professor
  • Clinical Research Assistant
  • Clinical Research Nurse
  • Clinician Researcher
  • Department Manager
  • Dual-education Student
  • Full Professor
  • Honorary Professor
  • Lab assistant
  • Master Student
  • Non-permanent Researcher
  • Nursing Staff
  • Permanent Researcher
  • Pharmacist
  • PhD Student
  • Physician
  • Post-doc
  • Prize
  • Project Manager
  • Research Associate
  • Research Engineer
  • Retired scientist
  • Technician
  • Undergraduate Student
  • Veterinary
  • Visiting Scientist
  • Deputy Director of Center
  • Deputy Director of Department
  • Deputy Director of National Reference Center
  • Deputy Head of Facility
  • Director of Center
  • Director of Department
  • Director of Institute
  • Director of National Reference Center
  • Group Leader
  • Head of Facility
  • Head of Operations
  • Head of Structure
  • Honorary President of the Departement
  • Labex Coordinator
Content 2
  • member
  • team
  • department
  • center
  • program_project
  • nrc
  • whocc
  • project
  • software
  • tool
  • patent
  • Administrative Staff
  • Assistant Professor
  • Associate Professor
  • Clinical Research Assistant
  • Clinical Research Nurse
  • Clinician Researcher
  • Department Manager
  • Dual-education Student
  • Full Professor
  • Honorary Professor
  • Lab assistant
  • Master Student
  • Non-permanent Researcher
  • Nursing Staff
  • Permanent Researcher
  • Pharmacist
  • PhD Student
  • Physician
  • Post-doc
  • Prize
  • Project Manager
  • Research Associate
  • Research Engineer
  • Retired scientist
  • Technician
  • Undergraduate Student
  • Veterinary
  • Visiting Scientist
  • Deputy Director of Center
  • Deputy Director of Department
  • Deputy Director of National Reference Center
  • Deputy Head of Facility
  • Director of Center
  • Director of Department
  • Director of Institute
  • Director of National Reference Center
  • Group Leader
  • Head of Facility
  • Head of Operations
  • Head of Structure
  • Honorary President of the Departement
  • Labex Coordinator
Search

← Go to Research

Go back
Scroll to top
Share
© Research
Publication : NeuroImage

Model-based feature construction for multivariate decoding

Scientific Fields
Diseases
Organisms
Applications
Technique

Published in NeuroImage - 18 Apr 2010

Brodersen KH, Haiss F, Ong CS, Jung F, Tittgemeyer M, Buhmann JM, Weber B, Stephan KE

Link to Pubmed [PMID] – 20406688

Neuroimage 2011 May;56(2):601-15

Conventional decoding methods in neuroscience aim to predict discrete brain states from multivariate correlates of neural activity. This approach faces two important challenges. First, a small number of examples are typically represented by a much larger number of features, making it hard to select the few informative features that allow for accurate predictions. Second, accuracy estimates and information maps often remain descriptive and can be hard to interpret. In this paper, we propose a model-based decoding approach that addresses both challenges from a new angle. Our method involves (i) inverting a dynamic causal model of neurophysiological data in a trial-by-trial fashion; (ii) training and testing a discriminative classifier on a strongly reduced feature space derived from trial-wise estimates of the model parameters; and (iii) reconstructing the separating hyperplane. Since the approach is model-based, it provides a principled dimensionality reduction of the feature space; in addition, if the model is neurobiologically plausible, decoding results may offer a mechanistically meaningful interpretation. The proposed method can be used in conjunction with a variety of modelling approaches and brain data, and supports decoding of either trial or subject labels. Moreover, it can supplement evidence-based approaches for model-based decoding and enable structural model selection in cases where Bayesian model selection cannot be applied. Here, we illustrate its application using dynamic causal modelling (DCM) of electrophysiological recordings in rodents. We demonstrate that the approach achieves significant above-chance performance and, at the same time, allows for a neurobiological interpretation of the results.