Search anything and hit enter
  • Teams
  • Members
  • Projects
  • Events
  • Calls
  • Jobs
  • publications
  • Software
  • Tools
  • Network
  • Equipment

A little guide for advanced search:

  • Tip 1. You can use quotes "" to search for an exact expression.
    Example: "cell division"
  • Tip 2. You can use + symbol to restrict results containing all words.
    Example: +cell +stem
  • Tip 3. You can use + and - symbols to force inclusion or exclusion of specific words.
    Example: +cell -stem
e.g. searching for members in projects tagged cancer
Search for
Count
IN
OUT
Content 1
  • member
  • team
  • department
  • center
  • program_project
  • nrc
  • whocc
  • project
  • software
  • tool
  • patent
  • Administrative Staff
  • Assistant Professor
  • Associate Professor
  • Clinical Research Assistant
  • Clinical Research Nurse
  • Clinician Researcher
  • Department Manager
  • Dual-education Student
  • Full Professor
  • Honorary Professor
  • Lab assistant
  • Master Student
  • Non-permanent Researcher
  • Nursing Staff
  • Permanent Researcher
  • Pharmacist
  • PhD Student
  • Physician
  • Post-doc
  • Prize
  • Project Manager
  • Research Associate
  • Research Engineer
  • Retired scientist
  • Technician
  • Undergraduate Student
  • Veterinary
  • Visiting Scientist
  • Deputy Director of Center
  • Deputy Director of Department
  • Deputy Director of National Reference Center
  • Deputy Head of Facility
  • Director of Center
  • Director of Department
  • Director of Institute
  • Director of National Reference Center
  • Group Leader
  • Head of Facility
  • Head of Operations
  • Head of Structure
  • Honorary President of the Departement
  • Labex Coordinator
Content 2
  • member
  • team
  • department
  • center
  • program_project
  • nrc
  • whocc
  • project
  • software
  • tool
  • patent
  • Administrative Staff
  • Assistant Professor
  • Associate Professor
  • Clinical Research Assistant
  • Clinical Research Nurse
  • Clinician Researcher
  • Department Manager
  • Dual-education Student
  • Full Professor
  • Honorary Professor
  • Lab assistant
  • Master Student
  • Non-permanent Researcher
  • Nursing Staff
  • Permanent Researcher
  • Pharmacist
  • PhD Student
  • Physician
  • Post-doc
  • Prize
  • Project Manager
  • Research Associate
  • Research Engineer
  • Retired scientist
  • Technician
  • Undergraduate Student
  • Veterinary
  • Visiting Scientist
  • Deputy Director of Center
  • Deputy Director of Department
  • Deputy Director of National Reference Center
  • Deputy Head of Facility
  • Director of Center
  • Director of Department
  • Director of Institute
  • Director of National Reference Center
  • Group Leader
  • Head of Facility
  • Head of Operations
  • Head of Structure
  • Honorary President of the Departement
  • Labex Coordinator
Search
Go back
Scroll to top
Share
© Research
Publication : Journal of Proteome Research

Metabolic, immune, and gut microbial signals mount a systems response to Leishmania major infection.

Scientific Fields
Diseases
Organisms
Applications
Technique

Published in Journal of Proteome Research - 02 Jan 2015

Lamour SD, Veselkov KA, Posma JM, Giraud E, Rogers ME, Croft S, Marchesi JR, Holmes E, Seifert K, Saric J.

J Proteome Res. 2015 Jan 2;14(1):318-29

Parasitic infections such as leishmaniasis induce a cascade of host physiological responses, including metabolic and immunological changes. Infection with Leishmania major parasites causes cutaneous leishmaniasis in humans, a neglected tropical disease that is difficult to manage. To understand the determinants of pathology, we studied L. major infection in two mouse models: the self-healing C57BL/6 strain and the nonhealing BALB/c strain. Metabolic profiling of urine, plasma, and feces via proton NMR spectroscopy was performed to discover parasite-specific imprints on global host metabolism. Plasma cytokine status and fecal microbiome were also characterized as additional metrics of the host response to infection. Results demonstrated differences in glucose and lipid metabolism, distinctive immunological phenotypes, and shifts in microbial composition between the two models. We present a novel approach to integrate such metrics using correlation network analyses, whereby self-healing mice demonstrated an orchestrated interaction between the biological measures shortly after infection. In contrast, the response observed in nonhealing mice was delayed and fragmented. Our study suggests that trans-system communication across host metabolism, the innate immune system, and gut microbiome is key for a successful host response to L. major and provides a new concept, potentially translatable to other diseases.