Search anything and hit enter
  • Teams
  • Members
  • Projects
  • Events
  • Calls
  • Jobs
  • publications
  • Software
  • Tools
  • Network
  • Equipment

A little guide for advanced search:

  • Tip 1. You can use quotes "" to search for an exact expression.
    Example: "cell division"
  • Tip 2. You can use + symbol to restrict results containing all words.
    Example: +cell +stem
  • Tip 3. You can use + and - symbols to force inclusion or exclusion of specific words.
    Example: +cell -stem
e.g. searching for members in projects tagged cancer
Search for
Count
IN
OUT
Content 1
  • member
  • team
  • department
  • center
  • program_project
  • nrc
  • whocc
  • project
  • software
  • tool
  • patent
  • Administrative Staff
  • Assistant Professor
  • Associate Professor
  • Clinical Research Assistant
  • Clinical Research Nurse
  • Clinician Researcher
  • Department Manager
  • Dual-education Student
  • Full Professor
  • Honorary Professor
  • Lab assistant
  • Master Student
  • Non-permanent Researcher
  • Nursing Staff
  • Permanent Researcher
  • Pharmacist
  • PhD Student
  • Physician
  • Post-doc
  • Prize
  • Project Manager
  • Research Associate
  • Research Engineer
  • Retired scientist
  • Technician
  • Undergraduate Student
  • Veterinary
  • Visiting Scientist
  • Deputy Director of Center
  • Deputy Director of Department
  • Deputy Director of National Reference Center
  • Deputy Head of Facility
  • Director of Center
  • Director of Department
  • Director of Institute
  • Director of National Reference Center
  • Group Leader
  • Head of Facility
  • Head of Operations
  • Head of Structure
  • Honorary President of the Departement
  • Labex Coordinator
Content 2
  • member
  • team
  • department
  • center
  • program_project
  • nrc
  • whocc
  • project
  • software
  • tool
  • patent
  • Administrative Staff
  • Assistant Professor
  • Associate Professor
  • Clinical Research Assistant
  • Clinical Research Nurse
  • Clinician Researcher
  • Department Manager
  • Dual-education Student
  • Full Professor
  • Honorary Professor
  • Lab assistant
  • Master Student
  • Non-permanent Researcher
  • Nursing Staff
  • Permanent Researcher
  • Pharmacist
  • PhD Student
  • Physician
  • Post-doc
  • Prize
  • Project Manager
  • Research Associate
  • Research Engineer
  • Retired scientist
  • Technician
  • Undergraduate Student
  • Veterinary
  • Visiting Scientist
  • Deputy Director of Center
  • Deputy Director of Department
  • Deputy Director of National Reference Center
  • Deputy Head of Facility
  • Director of Center
  • Director of Department
  • Director of Institute
  • Director of National Reference Center
  • Group Leader
  • Head of Facility
  • Head of Operations
  • Head of Structure
  • Honorary President of the Departement
  • Labex Coordinator
Search

← Go to Research

Go back
Scroll to top
Share
© Research
Publication : Proteins

Mechanism of reactant and product dissociation from the anthrax edema factor: a locally enhanced sampling and steered molecular dynamics study

Scientific Fields
Diseases
Organisms
Applications
Technique

Published in Proteins - 21 Mar 2011

Martínez L, Malliavin TE, Blondel A

Link to Pubmed [PMID] – 21425348

Proteins 2011 May;79(5):1649-61

The anthrax edema factor is a toxin overproducing damaging levels of cyclic adenosine monophosphate (cAMP) and pyrophosphate (PPi) from ATP. Here, mechanisms of dissociation of ATP and products (cAMP, PPi) from the active site are studied using locally enhanced sampling (LES) and steered molecular dynamics simulations. Various substrate conformations and ionic binding modes found in crystallographic structures are considered. LES simulations show that PPi and cAMP dissociate through different solvent accessible channels, while ATP dissociation requires significant active site exposure to solvent. The ionic content of the active site directly affects the dissociation of ATP and products. Only one ion dissociates along with ATP in the two-Mg(2+) binding site, suggesting that the other ion binds EF prior to ATP association. Dissociation of reaction products cAMP and PPi is impaired by direct electrostatic interactions between products and Mg(2+) ions. This provides an explanation for the inhibitory effect of high Mg(2+) concentrations on EF enzymatic activity. Breaking of electrostatic interactions is dependent on a competitive binding of water molecules to the ions, and thus on the solvent accessibility of the active site. Consequently, product dissociation seems to be a two-step process. First, ligands are progressively solvated while preserving the most important electrostatic interactions, in a process that is dependent on the flexibility of the active site. Second, breakage of the electrostatic bonds follows, and ligands diffuse into solvent. In agreement with this mechanism, product protonation facilitates dissociation.