Search anything and hit enter
  • Teams
  • Members
  • Projects
  • Events
  • Calls
  • Jobs
  • publications
  • Software
  • Tools
  • Network
  • Equipment

A little guide for advanced search:

  • Tip 1. You can use quotes "" to search for an exact expression.
    Example: "cell division"
  • Tip 2. You can use + symbol to restrict results containing all words.
    Example: +cell +stem
  • Tip 3. You can use + and - symbols to force inclusion or exclusion of specific words.
    Example: +cell -stem
e.g. searching for members in projects tagged cancer
Search for
Count
IN
OUT
Content 1
  • member
  • team
  • department
  • center
  • program_project
  • nrc
  • whocc
  • project
  • software
  • tool
  • patent
  • Administrative Staff
  • Assistant Professor
  • Associate Professor
  • Clinical Research Assistant
  • Clinical Research Nurse
  • Clinician Researcher
  • Department Manager
  • Dual-education Student
  • Full Professor
  • Honorary Professor
  • Lab assistant
  • Master Student
  • Non-permanent Researcher
  • Nursing Staff
  • Permanent Researcher
  • Pharmacist
  • PhD Student
  • Physician
  • Post-doc
  • Prize
  • Project Manager
  • Research Associate
  • Research Engineer
  • Retired scientist
  • Technician
  • Undergraduate Student
  • Veterinary
  • Visiting Scientist
  • Deputy Director of Center
  • Deputy Director of Department
  • Deputy Director of National Reference Center
  • Deputy Head of Facility
  • Director of Center
  • Director of Department
  • Director of Institute
  • Director of National Reference Center
  • Group Leader
  • Head of Facility
  • Head of Operations
  • Head of Structure
  • Honorary President of the Departement
  • Labex Coordinator
Content 2
  • member
  • team
  • department
  • center
  • program_project
  • nrc
  • whocc
  • project
  • software
  • tool
  • patent
  • Administrative Staff
  • Assistant Professor
  • Associate Professor
  • Clinical Research Assistant
  • Clinical Research Nurse
  • Clinician Researcher
  • Department Manager
  • Dual-education Student
  • Full Professor
  • Honorary Professor
  • Lab assistant
  • Master Student
  • Non-permanent Researcher
  • Nursing Staff
  • Permanent Researcher
  • Pharmacist
  • PhD Student
  • Physician
  • Post-doc
  • Prize
  • Project Manager
  • Research Associate
  • Research Engineer
  • Retired scientist
  • Technician
  • Undergraduate Student
  • Veterinary
  • Visiting Scientist
  • Deputy Director of Center
  • Deputy Director of Department
  • Deputy Director of National Reference Center
  • Deputy Head of Facility
  • Director of Center
  • Director of Department
  • Director of Institute
  • Director of National Reference Center
  • Group Leader
  • Head of Facility
  • Head of Operations
  • Head of Structure
  • Honorary President of the Departement
  • Labex Coordinator
Search

← Go to Research

Go back
Scroll to top
Share
© Research
Publication : Nature

Mechanism of differential control of NMDA receptor activity by NR2 subunits.

Scientific Fields
Diseases
Organisms
Applications
Technique

Published in Nature - 04 Jun 2009

Gielen M, Siegler Retchless B, Mony L, Johnson JW, Paoletti P,

Link to Pubmed [PMID] – 19404260

Link to DOI – 10.1038/nature07993

Nature 2009 Jun; 459(7247): 703-7

N-methyl-d-aspartate (NMDA) receptors (NMDARs) are a major class of excitatory neurotransmitter receptors in the central nervous system. They form glutamate-gated ion channels that are highly permeable to calcium and mediate activity-dependent synaptic plasticity. NMDAR dysfunction is implicated in multiple brain disorders, including stroke, chronic pain and schizophrenia. NMDARs exist as multiple subtypes with distinct pharmacological and biophysical properties that are largely determined by the type of NR2 subunit (NR2A to NR2D) incorporated in the heteromeric NR1/NR2 complex. A fundamental difference between NMDAR subtypes is their channel maximal open probability (P(o)), which spans a 50-fold range from about 0.5 for NR2A-containing receptors to about 0.01 for receptors containing NR2C and NR2D; NR2B-containing receptors have an intermediate value (about 0.1). These differences in P(o) confer unique charge transfer capacities and signalling properties on each receptor subtype. The molecular basis for this profound difference in activity between NMDAR subtypes is unknown. Here we show that the subunit-specific gating of NMDARs is controlled by the region formed by the NR2 amino-terminal domain (NTD), an extracellular clamshell-like domain previously shown to bind allosteric inhibitors, and the short linker connecting the NTD to the agonist-binding domain (ABD). The subtype specificity of NMDAR P(o) largely reflects differences in the spontaneous (ligand-independent) equilibrium between open-cleft and closed-cleft conformations of the NR2-NTD. This NTD-driven gating control also affects pharmacological properties by setting the sensitivity to the endogenous inhibitors zinc and protons. Our results provide a proof of concept for a drug-based bidirectional control of NMDAR activity by using molecules acting either as NR2-NTD ‘closers’ or ‘openers’ promoting receptor inhibition or potentiation, respectively.