Search anything and hit enter
  • Teams
  • Members
  • Projects
  • Events
  • Calls
  • Jobs
  • publications
  • Software
  • Tools
  • Network
  • Equipment

A little guide for advanced search:

  • Tip 1. You can use quotes "" to search for an exact expression.
    Example: "cell division"
  • Tip 2. You can use + symbol to restrict results containing all words.
    Example: +cell +stem
  • Tip 3. You can use + and - symbols to force inclusion or exclusion of specific words.
    Example: +cell -stem
e.g. searching for members in projects tagged cancer
Search for
Count
IN
OUT
Content 1
  • member
  • team
  • department
  • center
  • program_project
  • nrc
  • whocc
  • project
  • software
  • tool
  • patent
  • Administrative Staff
  • Assistant Professor
  • Associate Professor
  • Clinical Research Assistant
  • Full Professor
  • Graduate Student
  • Lab assistant
  • Non-permanent Researcher
  • Permanent Researcher
  • Pharmacist
  • PhD Student
  • Physician
  • Post-doc
  • Project Manager
  • Research Associate
  • Research Engineer
  • Retired scientist
  • Technician
  • Undergraduate Student
  • Veterinary
  • Visiting Scientist
  • Deputy Director of Center
  • Deputy Director of Department
  • Deputy Director of National Reference Center
  • Deputy Head of Facility
  • Director of Center
  • Director of Department
  • Director of Institute
  • Director of National Reference Center
  • Group Leader
  • Head of Facility
  • Head of Operations
  • Head of Structure
  • Honorary President of the Departement
  • Labex Coordinator
Content 2
  • member
  • team
  • department
  • center
  • program_project
  • nrc
  • whocc
  • project
  • software
  • tool
  • patent
  • Administrative Staff
  • Assistant Professor
  • Associate Professor
  • Clinical Research Assistant
  • Full Professor
  • Graduate Student
  • Lab assistant
  • Non-permanent Researcher
  • Permanent Researcher
  • Pharmacist
  • PhD Student
  • Physician
  • Post-doc
  • Project Manager
  • Research Associate
  • Research Engineer
  • Retired scientist
  • Technician
  • Undergraduate Student
  • Veterinary
  • Visiting Scientist
  • Deputy Director of Center
  • Deputy Director of Department
  • Deputy Director of National Reference Center
  • Deputy Head of Facility
  • Director of Center
  • Director of Department
  • Director of Institute
  • Director of National Reference Center
  • Group Leader
  • Head of Facility
  • Head of Operations
  • Head of Structure
  • Honorary President of the Departement
  • Labex Coordinator
Search
Go back
Scroll to top
Share
© Research
Publication : BMC infectious diseases

Limits of patient isolation measures to control extended-spectrum beta-lactamase-producing Enterobacteriaceae: model-based analysis of clinical data in a pediatric ward

Scientific Fields
Diseases
Organisms
Applications
Technique

Published in BMC infectious diseases - 24 Apr 2013

Domenech de Cellès M, Zahar JR, Abadie V, Guillemot D

Link to Pubmed [PMID] – 23618041

BMC Infect. Dis. 2013 Apr;13:187

BACKGROUND: Extended-spectrum beta-lactamase-producing Enterobacteriaceae (ESBL-E) are a growing concern in hospitals and the community. How to control the nosocomial ESBL-E transmission is a matter of debate. Contact isolation of patients has been recommended but evidence supporting it in non-outbreak settings has been inconclusive.

METHODS: We used stochastic transmission models to analyze retrospective observational data from a two-phase intervention in a pediatric ward, successively implementing single-room isolation and patient cohorting in an isolation ward, combined with active ESBL-E screening.

RESULTS: For both periods, model estimates suggested reduced transmission from isolated/cohorted patients. However, most of the incidence originated from sporadic sources (i.e. independent of cross-transmission), unaffected by the isolation measures. When sporadic sources are high, our model predicted that even substantial efforts to prevent transmission from carriers would have limited impact on ESBL-E rates.

CONCLUSIONS: Our results provide evidence that, considering the importance of sporadic acquisition, e.g. endogenous selection of resistant strains following antibiotic treatment, contact-isolation measures alone might not suffice to control ESBL-E. They also support the view that estimating cross-transmission extent is key to predicting the relative success of contact-isolation measures. Mathematical models could prove useful for those estimations and guide decisions concerning the most effective control strategy.

https://www.ncbi.nlm.nih.gov/pubmed/23618041