Search anything and hit enter
  • Teams
  • Members
  • Projects
  • Events
  • Calls
  • Jobs
  • publications
  • Software
  • Tools
  • Network
  • Equipment

A little guide for advanced search:

  • Tip 1. You can use quotes "" to search for an exact expression.
    Example: "cell division"
  • Tip 2. You can use + symbol to restrict results containing all words.
    Example: +cell +stem
  • Tip 3. You can use + and - symbols to force inclusion or exclusion of specific words.
    Example: +cell -stem
e.g. searching for members in projects tagged cancer
Search for
Count
IN
OUT
Content 1
  • member
  • team
  • department
  • center
  • program_project
  • nrc
  • whocc
  • project
  • software
  • tool
  • patent
  • Administrative Staff
  • Assistant Professor
  • Associate Professor
  • Clinical Research Assistant
  • Clinical Research Nurse
  • Clinician Researcher
  • Department Manager
  • Dual-education Student
  • Full Professor
  • Honorary Professor
  • Lab assistant
  • Master Student
  • Non-permanent Researcher
  • Nursing Staff
  • Permanent Researcher
  • Pharmacist
  • PhD Student
  • Physician
  • Post-doc
  • Prize
  • Project Manager
  • Research Associate
  • Research Engineer
  • Retired scientist
  • Technician
  • Undergraduate Student
  • Veterinary
  • Visiting Scientist
  • Deputy Director of Center
  • Deputy Director of Department
  • Deputy Director of National Reference Center
  • Deputy Head of Facility
  • Director of Center
  • Director of Department
  • Director of Institute
  • Director of National Reference Center
  • Group Leader
  • Head of Facility
  • Head of Operations
  • Head of Structure
  • Honorary President of the Departement
  • Labex Coordinator
Content 2
  • member
  • team
  • department
  • center
  • program_project
  • nrc
  • whocc
  • project
  • software
  • tool
  • patent
  • Administrative Staff
  • Assistant Professor
  • Associate Professor
  • Clinical Research Assistant
  • Clinical Research Nurse
  • Clinician Researcher
  • Department Manager
  • Dual-education Student
  • Full Professor
  • Honorary Professor
  • Lab assistant
  • Master Student
  • Non-permanent Researcher
  • Nursing Staff
  • Permanent Researcher
  • Pharmacist
  • PhD Student
  • Physician
  • Post-doc
  • Prize
  • Project Manager
  • Research Associate
  • Research Engineer
  • Retired scientist
  • Technician
  • Undergraduate Student
  • Veterinary
  • Visiting Scientist
  • Deputy Director of Center
  • Deputy Director of Department
  • Deputy Director of National Reference Center
  • Deputy Head of Facility
  • Director of Center
  • Director of Department
  • Director of Institute
  • Director of National Reference Center
  • Group Leader
  • Head of Facility
  • Head of Operations
  • Head of Structure
  • Honorary President of the Departement
  • Labex Coordinator
Search

← Go to Research

Go back
Scroll to top
Share
© Research
Publication : Biochemistry

Kinetics of appearance of an early immunoreactive species during the refolding of acid-denatured Escherichia coli tryptophan synthase beta 2 subunit

Scientific Fields
Diseases
Organisms
Applications
Technique

Published in Biochemistry - 04 Oct 1988

Murry-Brelier A, Goldberg ME

Link to Pubmed [PMID] – 2462907

Biochemistry 1988 Oct;27(20):7633-40

A reversible acid-denaturation process of the beta 2 subunit of Escherichia coli tryptophan synthase has been set up. The acid-denatured state has been physically characterized: though not in a random-coiled conformation, it is extensively denatured. The renaturation of this denatured state of beta 2 has been observed in a stopped-flow system, in the presence of a monoclonal antibody directed against native beta 2. It is shown that the association occurs very early in the folding of beta 2. The association rate constants of the antibody with the immunoreactive folding intermediate and with native beta 2 are the same (3 X 10(5) M-1.s-1). But at high antibody concentrations the formation of the antigen/antibody complex is rate limited by a rapid (5.4 X 10(-2) s-1) isomerization of refolding beta chains. This isomerization appears to reflect the formation of at least part of the epitope recognized by the antibody during the folding of beta 2. Further conformational adjustments occurring later in the folding pathway would then allow the ultimate structuring of the epitope.