Search anything and hit enter
  • Teams
  • Members
  • Projects
  • Events
  • Calls
  • Jobs
  • publications
  • Software
  • Tools
  • Network
  • Equipment

A little guide for advanced search:

  • Tip 1. You can use quotes "" to search for an exact expression.
    Example: "cell division"
  • Tip 2. You can use + symbol to restrict results containing all words.
    Example: +cell +stem
  • Tip 3. You can use + and - symbols to force inclusion or exclusion of specific words.
    Example: +cell -stem
e.g. searching for members in projects tagged cancer
Search for
Count
IN
OUT
Content 1
  • member
  • team
  • department
  • center
  • program_project
  • nrc
  • whocc
  • project
  • software
  • tool
  • patent
  • Administrative Staff
  • Assistant Professor
  • Associate Professor
  • Clinical Research Assistant
  • Clinical Research Nurse
  • Clinician Researcher
  • Department Manager
  • Dual-education Student
  • Full Professor
  • Honorary Professor
  • Lab assistant
  • Master Student
  • Non-permanent Researcher
  • Nursing Staff
  • Permanent Researcher
  • Pharmacist
  • PhD Student
  • Physician
  • Post-doc
  • Prize
  • Project Manager
  • Research Associate
  • Research Engineer
  • Retired scientist
  • Technician
  • Undergraduate Student
  • Veterinary
  • Visiting Scientist
  • Deputy Director of Center
  • Deputy Director of Department
  • Deputy Director of National Reference Center
  • Deputy Head of Facility
  • Director of Center
  • Director of Department
  • Director of Institute
  • Director of National Reference Center
  • Group Leader
  • Head of Facility
  • Head of Operations
  • Head of Structure
  • Honorary President of the Departement
  • Labex Coordinator
Content 2
  • member
  • team
  • department
  • center
  • program_project
  • nrc
  • whocc
  • project
  • software
  • tool
  • patent
  • Administrative Staff
  • Assistant Professor
  • Associate Professor
  • Clinical Research Assistant
  • Clinical Research Nurse
  • Clinician Researcher
  • Department Manager
  • Dual-education Student
  • Full Professor
  • Honorary Professor
  • Lab assistant
  • Master Student
  • Non-permanent Researcher
  • Nursing Staff
  • Permanent Researcher
  • Pharmacist
  • PhD Student
  • Physician
  • Post-doc
  • Prize
  • Project Manager
  • Research Associate
  • Research Engineer
  • Retired scientist
  • Technician
  • Undergraduate Student
  • Veterinary
  • Visiting Scientist
  • Deputy Director of Center
  • Deputy Director of Department
  • Deputy Director of National Reference Center
  • Deputy Head of Facility
  • Director of Center
  • Director of Department
  • Director of Institute
  • Director of National Reference Center
  • Group Leader
  • Head of Facility
  • Head of Operations
  • Head of Structure
  • Honorary President of the Departement
  • Labex Coordinator
Search
Go back
Scroll to top
Share
© Research
Publication : L'Encéphale

[Ketamine’s antidepressant effect: focus on ketamine mechanisms of action]

Scientific Fields
Diseases
Organisms
Applications
Technique

Published in L'Encéphale - 13 Jan 2014

De Maricourt P, Jay T, Goncalvès P, Lôo H, Gaillard R

Link to Pubmed [PMID] – 24434007.

Encephale 2014 Feb;40(1):48-55

BACKGROUND: In recent years, discovery of ketamine’s fast and powerful antidepressant effects for treatment-resistant depression (TRD) has led to rethinking of the pathophysiology of depression. Numerous studies in humans and animals have focused on mechanisms of action underlying this effect, producing a number of explanatory pathways.

METHOD: The aim of this article is to summarize the various hypotheses underlying rapid antidepressant action of ketamine and therefore to better understand the mechanisms underlying depression and antidepressant action.

RESULTS: Ketamine unique antidepressant properties have led to many studies on its neurobiological grounds. Intracellular signaling pathways such as mTOR, GSK3 or eEF2 seem to play a key role and are associated with an increased synaptic plasticity. Other hypotheses are discussed such as ketamine effects on neuro-inflammation, the role of anterior cingulate cortex in brain changes induced by ketamine, and the potential benefits of analgesic properties of ketamine in depressive disorders.

CONCLUSION: Our review highlights the potential role of the glutamatergic system in the pathophysiology and treatment of mood disorders. Understanding which pathways underlie the fast antidepressant effect of ketamine paves the way for the development of new antidepressants.