Search anything and hit enter
  • Teams
  • Members
  • Projects
  • Events
  • Calls
  • Jobs
  • publications
  • Software
  • Tools
  • Network
  • Equipment

A little guide for advanced search:

  • Tip 1. You can use quotes "" to search for an exact expression.
    Example: "cell division"
  • Tip 2. You can use + symbol to restrict results containing all words.
    Example: +cell +stem
  • Tip 3. You can use + and - symbols to force inclusion or exclusion of specific words.
    Example: +cell -stem
e.g. searching for members in projects tagged cancer
Search for
Count
IN
OUT
Content 1
  • member
  • team
  • department
  • center
  • program_project
  • nrc
  • whocc
  • project
  • software
  • tool
  • patent
  • Administrative Staff
  • Assistant Professor
  • Associate Professor
  • Clinical Research Assistant
  • Clinical Research Nurse
  • Clinician Researcher
  • Department Manager
  • Dual-education Student
  • Full Professor
  • Honorary Professor
  • Lab assistant
  • Master Student
  • Non-permanent Researcher
  • Nursing Staff
  • Permanent Researcher
  • Pharmacist
  • PhD Student
  • Physician
  • Post-doc
  • Prize
  • Project Manager
  • Research Associate
  • Research Engineer
  • Retired scientist
  • Technician
  • Undergraduate Student
  • Veterinary
  • Visiting Scientist
  • Deputy Director of Center
  • Deputy Director of Department
  • Deputy Director of National Reference Center
  • Deputy Head of Facility
  • Director of Center
  • Director of Department
  • Director of Institute
  • Director of National Reference Center
  • Group Leader
  • Head of Facility
  • Head of Operations
  • Head of Structure
  • Honorary President of the Departement
  • Labex Coordinator
Content 2
  • member
  • team
  • department
  • center
  • program_project
  • nrc
  • whocc
  • project
  • software
  • tool
  • patent
  • Administrative Staff
  • Assistant Professor
  • Associate Professor
  • Clinical Research Assistant
  • Clinical Research Nurse
  • Clinician Researcher
  • Department Manager
  • Dual-education Student
  • Full Professor
  • Honorary Professor
  • Lab assistant
  • Master Student
  • Non-permanent Researcher
  • Nursing Staff
  • Permanent Researcher
  • Pharmacist
  • PhD Student
  • Physician
  • Post-doc
  • Prize
  • Project Manager
  • Research Associate
  • Research Engineer
  • Retired scientist
  • Technician
  • Undergraduate Student
  • Veterinary
  • Visiting Scientist
  • Deputy Director of Center
  • Deputy Director of Department
  • Deputy Director of National Reference Center
  • Deputy Head of Facility
  • Director of Center
  • Director of Department
  • Director of Institute
  • Director of National Reference Center
  • Group Leader
  • Head of Facility
  • Head of Operations
  • Head of Structure
  • Honorary President of the Departement
  • Labex Coordinator
Search
Go back
Scroll to top
Share
© Research
Publication : The New biologist

Jun DNA-binding is modulated by mutations between the leucines or by direct interaction of fos with the TGACTCA sequence

Scientific Fields
Diseases
Organisms
Applications
Technique

Published in The New biologist - 01 Nov 1989

Hirai S, Yaniv M

Link to Pubmed [PMID] – 2562220

New Biol. 1989 Nov;1(2):181-91

Mutations between the leucines of the “leucine zipper” domain of Jun D can either decrease (Asn 301 to Ala) or increase (Thr 307, Ala 308, to Glu, Val) homodimer formation and specific binding to DNA even though such changes do not modify the predicted alpha-helical structure of this region. As shown previously, addition of Fos strongly increases the affinity of Jun for DNA by forming a heterodimer. The jun down mutation (Asn 301 to Ala) also diminishes DNA binding by the Fos-Jun D heterodimer. These data strongly support the coiled coil conformation of this region where residues adjacent to the leucines are also important for dimer formation. Ultraviolet cross-linking experiments have shown that both Fos and Jun directly contact the TGACTCA palindromic sequence defined as a TPA (12-O-tetradecanoyl phorbol-13-acetate) response element or TRE. Both Jun homodimers and Jun-Fos heterodimers bind this TRE as well as the cAMP responsive element (CRE or TGACGTCA) with comparable affinities. While strong c-Jun or Jun D binding requires a perfect palindrome, Jun-Fos complexes can also efficiently recognize sequences where the right half of the palindrome is less conserved (TGACTAA or TGACGCA).