Search anything and hit enter
  • Teams
  • Members
  • Projects
  • Events
  • Calls
  • Jobs
  • publications
  • Software
  • Tools
  • Network
  • Equipment

A little guide for advanced search:

  • Tip 1. You can use quotes "" to search for an exact expression.
    Example: "cell division"
  • Tip 2. You can use + symbol to restrict results containing all words.
    Example: +cell +stem
  • Tip 3. You can use + and - symbols to force inclusion or exclusion of specific words.
    Example: +cell -stem
e.g. searching for members in projects tagged cancer
Search for
Count
IN
OUT
Content 1
  • member
  • team
  • department
  • center
  • program_project
  • nrc
  • whocc
  • project
  • software
  • tool
  • patent
  • Administrative Staff
  • Assistant Professor
  • Associate Professor
  • Clinical Research Assistant
  • Clinical Research Nurse
  • Clinician Researcher
  • Department Manager
  • Dual-education Student
  • Full Professor
  • Honorary Professor
  • Lab assistant
  • Master Student
  • Non-permanent Researcher
  • Nursing Staff
  • Permanent Researcher
  • Pharmacist
  • PhD Student
  • Physician
  • Post-doc
  • Prize
  • Project Manager
  • Research Associate
  • Research Engineer
  • Retired scientist
  • Technician
  • Undergraduate Student
  • Veterinary
  • Visiting Scientist
  • Deputy Director of Center
  • Deputy Director of Department
  • Deputy Director of National Reference Center
  • Deputy Head of Facility
  • Director of Center
  • Director of Department
  • Director of Institute
  • Director of National Reference Center
  • Group Leader
  • Head of Facility
  • Head of Operations
  • Head of Structure
  • Honorary President of the Departement
  • Labex Coordinator
Content 2
  • member
  • team
  • department
  • center
  • program_project
  • nrc
  • whocc
  • project
  • software
  • tool
  • patent
  • Administrative Staff
  • Assistant Professor
  • Associate Professor
  • Clinical Research Assistant
  • Clinical Research Nurse
  • Clinician Researcher
  • Department Manager
  • Dual-education Student
  • Full Professor
  • Honorary Professor
  • Lab assistant
  • Master Student
  • Non-permanent Researcher
  • Nursing Staff
  • Permanent Researcher
  • Pharmacist
  • PhD Student
  • Physician
  • Post-doc
  • Prize
  • Project Manager
  • Research Associate
  • Research Engineer
  • Retired scientist
  • Technician
  • Undergraduate Student
  • Veterinary
  • Visiting Scientist
  • Deputy Director of Center
  • Deputy Director of Department
  • Deputy Director of National Reference Center
  • Deputy Head of Facility
  • Director of Center
  • Director of Department
  • Director of Institute
  • Director of National Reference Center
  • Group Leader
  • Head of Facility
  • Head of Operations
  • Head of Structure
  • Honorary President of the Departement
  • Labex Coordinator
Search
Go back
Scroll to top
Share
© Research
Publication : Cellular microbiology

Internalization of Bordetella pertussis adenylate cyclase-haemolysin into endocytic vesicles contributes to macrophage cytotoxicity

Scientific Fields
Diseases
Organisms
Applications
Technique

Published in Cellular microbiology - 01 Nov 2001

Khelef N, Gounon P, Guiso N

Link to Pubmed [PMID] – 11696032

Cell. Microbiol. 2001 Nov;3(11):721-30

Bordetella pertussis adenylate cyclase-haemolysin is a critical virulence factor in the murine model of intranasal infection, where it is required for several pathological effects, including macrophage apoptosis. Based on biochemical and immunological properties, it was proposed that the toxin was delivered directly to the cytoplasm of eukaryotic cells without trafficking through the endocytic pathway. In the present study, we analysed the cellular distribution of the adenylate cyclase-haemolysin during intoxication of macrophages. We showed that, shortly after its initial binding to the plasma membrane of macrophages, the toxin gains access to intracellular compartments that become progressively positive for the endosomal marker transferrin, but not for the lysosomal membrane protein CD107a/Lamp1. Importantly, the vesicular trafficking of the adenylate cyclase-haemolysin appears to be required for its ability to induce macrophage death. Inhibitors of actin polymerization and of macropinocytosis, as well as depletion of plasma membrane cholesterol and disruption of the Golgi network, reduce the toxin’s ability to kill macrophages. Altogether, these results suggest that internalization of the adenylate cyclase-haemolysin into endocytic vesicles, at least partly through macropinocytosis, contributes to cytotoxicity.