Search anything and hit enter
  • Teams
  • Members
  • Projects
  • Events
  • Calls
  • Jobs
  • publications
  • Software
  • Tools
  • Network
  • Equipment

A little guide for advanced search:

  • Tip 1. You can use quotes "" to search for an exact expression.
    Example: "cell division"
  • Tip 2. You can use + symbol to restrict results containing all words.
    Example: +cell +stem
  • Tip 3. You can use + and - symbols to force inclusion or exclusion of specific words.
    Example: +cell -stem
e.g. searching for members in projects tagged cancer
Search for
Count
IN
OUT
Content 1
  • member
  • team
  • department
  • center
  • program_project
  • nrc
  • whocc
  • project
  • software
  • tool
  • patent
  • Administrative Staff
  • Assistant Professor
  • Associate Professor
  • Clinical Research Assistant
  • Clinical Research Nurse
  • Clinician Researcher
  • Department Manager
  • Dual-education Student
  • Full Professor
  • Honorary Professor
  • Lab assistant
  • Master Student
  • Non-permanent Researcher
  • Nursing Staff
  • Permanent Researcher
  • Pharmacist
  • PhD Student
  • Physician
  • Post-doc
  • Prize
  • Project Manager
  • Research Associate
  • Research Engineer
  • Retired scientist
  • Technician
  • Undergraduate Student
  • Veterinary
  • Visiting Scientist
  • Deputy Director of Center
  • Deputy Director of Department
  • Deputy Director of National Reference Center
  • Deputy Head of Facility
  • Director of Center
  • Director of Department
  • Director of Institute
  • Director of National Reference Center
  • Group Leader
  • Head of Facility
  • Head of Operations
  • Head of Structure
  • Honorary President of the Departement
  • Labex Coordinator
Content 2
  • member
  • team
  • department
  • center
  • program_project
  • nrc
  • whocc
  • project
  • software
  • tool
  • patent
  • Administrative Staff
  • Assistant Professor
  • Associate Professor
  • Clinical Research Assistant
  • Clinical Research Nurse
  • Clinician Researcher
  • Department Manager
  • Dual-education Student
  • Full Professor
  • Honorary Professor
  • Lab assistant
  • Master Student
  • Non-permanent Researcher
  • Nursing Staff
  • Permanent Researcher
  • Pharmacist
  • PhD Student
  • Physician
  • Post-doc
  • Prize
  • Project Manager
  • Research Associate
  • Research Engineer
  • Retired scientist
  • Technician
  • Undergraduate Student
  • Veterinary
  • Visiting Scientist
  • Deputy Director of Center
  • Deputy Director of Department
  • Deputy Director of National Reference Center
  • Deputy Head of Facility
  • Director of Center
  • Director of Department
  • Director of Institute
  • Director of National Reference Center
  • Group Leader
  • Head of Facility
  • Head of Operations
  • Head of Structure
  • Honorary President of the Departement
  • Labex Coordinator
Search

← Go to Research

Go back
Scroll to top
Share
© Uwe Maskos
Tranche d'hippocampe de souris colorée avec deux toxines spécifiques de sous-types de récepteur nicotinique, en rouge (grains), et en vert (corps cellulaires). L'hippocampe est la zone du cerveau qui gère la mémoire spatiale.
Publication : Psychopharmacology

Inhibition of fatty acid amide hydrolase reduces reinstatement of nicotine seeking but not break point for nicotine self-administration–comparison with CB(1) receptor blockade

Scientific Fields
Diseases
Organisms
Applications
Technique

Published in Psychopharmacology - 30 May 2009

Forget B, Coen KM, Le Foll B

Link to Pubmed [PMID] – 19484221

Psychopharmacology (Berl.) 2009 Sep;205(4):613-24

RATIONALE: The endocannabinoid system has been recently identified as having critical involvement in drug taking and relapse phenomenon for various drugs of abuse and notably nicotine. The endocannabinoid system consists of endocannabinoids (such as anandamide), their target receptors (mostly cannabinoid CB(1) receptors), and the enzymes that degrade those endocannabinoids (fatty-acid-amide-hydrolase (FAAH) for anandamide). It has been recently identified that the utility of rimonabant for smoking cessation may be limited by its psychiatric side effects. Therefore, there is a great need to develop alternative ways of modulating the cannabinoid system that will be better tolerated.

OBJECTIVE: The aim of the study was to explore the effect of inhibiting FAAH enzyme by URB597 on nicotine self-administration under a progressive ratio schedule and reinstatement of nicotine seeking, in comparison with the effect of the CB(1) antagonist rimonabant.

RESULTS: Rimonabant, but not URB597, dose-dependently reduced the break point for nicotine self-administration, an effect that was stable over repeated administrations. Rimonabant and URB597 significantly decreased the reinstatement of nicotine seeking induced either by presentation of nicotine-associated stimuli or by nicotine priming.

CONCLUSIONS: These results indicate that the integrity of the CB(1) receptors is necessary for the incentive motivation of the rats for nicotine and that FAAH inhibition may be as effective as CB(1) receptor blockade to prevent reinstatement of nicotine seeking. Since FAAH inhibition present antidepressant and anxiolytic properties in rodents, targeting the FAAH may represent a novel strategy to prevent relapse for tobacco smoking that may be better tolerated than rimonabant.