Search anything and hit enter
  • Teams
  • Members
  • Projects
  • Events
  • Calls
  • Jobs
  • publications
  • Software
  • Tools
  • Network
  • Equipment

A little guide for advanced search:

  • Tip 1. You can use quotes "" to search for an exact expression.
    Example: "cell division"
  • Tip 2. You can use + symbol to restrict results containing all words.
    Example: +cell +stem
  • Tip 3. You can use + and - symbols to force inclusion or exclusion of specific words.
    Example: +cell -stem
e.g. searching for members in projects tagged cancer
Search for
Count
IN
OUT
Content 1
  • member
  • team
  • department
  • center
  • program_project
  • nrc
  • whocc
  • project
  • software
  • tool
  • patent
  • Administrative Staff
  • Assistant Professor
  • Associate Professor
  • Clinical Research Assistant
  • Clinical Research Nurse
  • Clinician Researcher
  • Department Manager
  • Dual-education Student
  • Full Professor
  • Honorary Professor
  • Lab assistant
  • Master Student
  • Non-permanent Researcher
  • Nursing Staff
  • Permanent Researcher
  • Pharmacist
  • PhD Student
  • Physician
  • Post-doc
  • Prize
  • Project Manager
  • Research Associate
  • Research Engineer
  • Retired scientist
  • Technician
  • Undergraduate Student
  • Veterinary
  • Visiting Scientist
  • Deputy Director of Center
  • Deputy Director of Department
  • Deputy Director of National Reference Center
  • Deputy Head of Facility
  • Director of Center
  • Director of Department
  • Director of Institute
  • Director of National Reference Center
  • Group Leader
  • Head of Facility
  • Head of Operations
  • Head of Structure
  • Honorary President of the Departement
  • Labex Coordinator
Content 2
  • member
  • team
  • department
  • center
  • program_project
  • nrc
  • whocc
  • project
  • software
  • tool
  • patent
  • Administrative Staff
  • Assistant Professor
  • Associate Professor
  • Clinical Research Assistant
  • Clinical Research Nurse
  • Clinician Researcher
  • Department Manager
  • Dual-education Student
  • Full Professor
  • Honorary Professor
  • Lab assistant
  • Master Student
  • Non-permanent Researcher
  • Nursing Staff
  • Permanent Researcher
  • Pharmacist
  • PhD Student
  • Physician
  • Post-doc
  • Prize
  • Project Manager
  • Research Associate
  • Research Engineer
  • Retired scientist
  • Technician
  • Undergraduate Student
  • Veterinary
  • Visiting Scientist
  • Deputy Director of Center
  • Deputy Director of Department
  • Deputy Director of National Reference Center
  • Deputy Head of Facility
  • Director of Center
  • Director of Department
  • Director of Institute
  • Director of National Reference Center
  • Group Leader
  • Head of Facility
  • Head of Operations
  • Head of Structure
  • Honorary President of the Departement
  • Labex Coordinator
Search

← Go to Research

Go back
Scroll to top
Share
© Research
Publication : American journal of respiratory cell and molecular biology

Influenza A induces the major secreted airway mucin MUC5AC in a protease-EGFR-extracellular regulated kinase-Sp1-dependent pathway

Scientific Fields
Diseases
Organisms
Applications
Technique

Published in American journal of respiratory cell and molecular biology - 01 Mar 2012

Barbier D, Garcia-Verdugo I, Pothlichet J, Khazen R, Descamps D, Rousseau K, Thornton D, Si-Tahar M, Touqui L, Chignard M, Sallenave JM

Link to Pubmed [PMID] – 22383584

Am. J. Respir. Cell Mol. Biol. 2012 Aug;47(2):149-57

Mucins, the main glycoproteins present within mucus, modulate the rheologic properties of airways and participate in lung defense. They are thought to be able to trap and eliminate microorganisms from the lung. Among the mucins secreted in the lung, MUC5AC is the most prominent factor secreted by surface epithelial cells. Although much is known about the signaling pathways involved in the regulation of MUC5AC by host factors such as cytokines or proteases, less is known about the pathways triggered by microorganisms and, specifically, by influenza A virus (IAV). We therefore set up experiments to dissect the molecular mechanisms responsible for the potential modulation of MUC5AC by IAV. Using epithelial cells, C57/Bl6 mice, and IAV strains, we measured MUC5AC expression at the RNA and protein levels, specificity protein 1 (Sp1) activation, and protease activity. Intermediate molecular partners were confirmed using pharmacological inhibitors, blocking antibodies, and small interfering (si)RNAs. We showed in vitro and in vivo that IAV up-regulates epithelial cell-derived MUC5AC and Muc5ac expression in mice, both at transcriptional (through the induction of Sp1) and translational levels. In addition, we determined that this induction was dependent on a protease-epithelial growth factor receptor-extracellular regulated kinase-Sp1 signaling cascade, involving in particular the human airway trypsin. Our data point to MUC5AC as a potential modulatory mechanism by which the lung epithelia respond to IAV infection, and we dissect, for the first time to the best of our knowledge, the molecular partners involved. Future experiments using MUC5AC-targeted strategies should help further unravel the pathophysiological consequences of IAV-induced MUC5AC expression for lung homeostasis.