Search anything and hit enter
  • Teams
  • Members
  • Projects
  • Events
  • Calls
  • Jobs
  • publications
  • Software
  • Tools
  • Network
  • Equipment

A little guide for advanced search:

  • Tip 1. You can use quotes "" to search for an exact expression.
    Example: "cell division"
  • Tip 2. You can use + symbol to restrict results containing all words.
    Example: +cell +stem
  • Tip 3. You can use + and - symbols to force inclusion or exclusion of specific words.
    Example: +cell -stem
e.g. searching for members in projects tagged cancer
Search for
Count
IN
OUT
Content 1
  • member
  • team
  • department
  • center
  • program_project
  • nrc
  • whocc
  • project
  • software
  • tool
  • patent
  • Administrative Staff
  • Assistant Professor
  • Associate Professor
  • Clinical Research Assistant
  • Full Professor
  • Graduate Student
  • Lab assistant
  • Non-permanent Researcher
  • Permanent Researcher
  • Pharmacist
  • PhD Student
  • Physician
  • Post-doc
  • Project Manager
  • Research Associate
  • Research Engineer
  • Retired scientist
  • Technician
  • Undergraduate Student
  • Veterinary
  • Visiting Scientist
  • Deputy Director of Center
  • Deputy Director of Department
  • Deputy Director of National Reference Center
  • Deputy Head of Facility
  • Director of Center
  • Director of Department
  • Director of Institute
  • Director of National Reference Center
  • Group Leader
  • Head of Facility
  • Head of Operations
  • Head of Structure
  • Honorary President of the Departement
  • Labex Coordinator
Content 2
  • member
  • team
  • department
  • center
  • program_project
  • nrc
  • whocc
  • project
  • software
  • tool
  • patent
  • Administrative Staff
  • Assistant Professor
  • Associate Professor
  • Clinical Research Assistant
  • Full Professor
  • Graduate Student
  • Lab assistant
  • Non-permanent Researcher
  • Permanent Researcher
  • Pharmacist
  • PhD Student
  • Physician
  • Post-doc
  • Project Manager
  • Research Associate
  • Research Engineer
  • Retired scientist
  • Technician
  • Undergraduate Student
  • Veterinary
  • Visiting Scientist
  • Deputy Director of Center
  • Deputy Director of Department
  • Deputy Director of National Reference Center
  • Deputy Head of Facility
  • Director of Center
  • Director of Department
  • Director of Institute
  • Director of National Reference Center
  • Group Leader
  • Head of Facility
  • Head of Operations
  • Head of Structure
  • Honorary President of the Departement
  • Labex Coordinator
Search
Go back
Scroll to top
Share
© Research
Publication : Genetic epidemiology

Inflated type I error rates when using aggregation methods to analyze rare variants in the 1000 Genomes Project exon sequencing data in unrelated individuals: summary results from Group 7 at Genetic Analysis Workshop 17

Scientific Fields
Diseases
Organisms
Applications
Technique

Published in Genetic epidemiology - 01 Jan 2011

Tintle N, Aschard H, Hu I, Nock N, Wang H, Pugh E

Link to Pubmed [PMID] – 22128060

Genet. Epidemiol. 2011;35 Suppl 1:S56-60

As part of Genetic Analysis Workshop 17 (GAW17), our group considered the application of novel and standard approaches to the analysis of genotype-phenotype association in next-generation sequencing data. Our group identified a major issue in the analysis of the GAW17 next-generation sequencing data: type I error and false-positive report probability rates higher than those expected based on empirical type I error levels (as high as 90%). Two main causes emerged: population stratification and long-range correlation (gametic phase disequilibrium) between rare variants. Population stratification was expected because of the diverse sample. Correlation between rare variants was attributable to both random causes (e.g., nearly 10,000 of 25,000 markers were private variants, and the sample size was small [n = 697]) and nonrandom causes (more correlation was observed than was expected by random chance). Principal components analysis was used to control for population structure and helped to minimize type I errors, but this was at the expense of identifying fewer causal variants. A novel multiple regression approach showed promise to handle correlation between markers. Further work is needed, first, to identify best practices for the control of type I errors in the analysis of sequencing data and then to explore and compare the many promising new aggregating approaches for identifying markers associated with disease phenotypes.

https://www.ncbi.nlm.nih.gov/pubmed/22128060